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CHAPTER I. INTRODUCTION 

The use of weighted regression analysis is closely asso-

ciated, from different points of view, with the building of 

an econometric model . The weights given to different obser-

vations are implicitly considered from the moment when the 

model builder establishes the purposes of constructing the 

model to the moment when it is decided to use a determined 

amount of data. 

If the purpose of the model is to predict the magnitude 

and/or direction of sudden change of an endogenous variable, 

it would seem convenient to consider that some observations 

are more important than others. When the model is used for 

forecasting and it is required to compare and interpret mean 

square error statistics of an autoregressive model with a 

structural model, Howrey et al . (18 , p. 376) suggest that 

power of forecast error comparisons might be increased by 

placing more weight on those periods during which the economy 

is undergoing unusual changes. If in the stage of choosing 

the variables which will be included in the model it is 

considered that these variables are measured with error, this 

will lead to the use of weighted regression. On the other 

hand , if the assumption that the variance is constant for 

all the observations is violated , the weighted regression is 

relevant. Even the use of less than all available data for 
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estimation is one way of weighting the observations, to the 

nonused data in the procedure of estimation is assigned a 

weight of zero to each observation, and a weight of one to 

each observation used for estimation. 

The method of Least Squares has the property that large 

deviations a~e treated with relatively greater attention 

(weight) than smaller ones; the weight assigned to these 

deviations would increase if the distribution had longer 

tails than the normal. Chow (5, p. 663) considers that a 

robust estimator which gives less weight to the large re-

sidual would be more acceptable for residuals which are 

nonnormally distributed. 

One of the purposes of weighting is to give more at-

tention to the measures of the independent variables, so 

that the best prediction is possible under the conditions 

of the relations among the explanatory variables themselves 

and between them and the dependent variable . 

Thus , the processes of estimation and validation are 

not completely separate processes, and as is pointed out 

by Ladd (25, p. 10), if a criterion is sufficiently important 

to be used in validating a model, it is sufficiently im-

portant to be incorporated into the estimation procedure. 

The objectives of this thesis are: 
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1. General 

a. To study the use of the weighted regression and 

the validation of econometric models. 

b. To consider the reasons for using weighted 

regression. 

2. Specific 

a. To evaluate several econometric models in which 

the parameters have been estimated using a 

weighted regression procedure and an unweighted 

procedure. 

b. To apply different criteria of evaluation to 

the econometric models compared. 

c. To compare weighted regression procedure with 

unweighted regression for forecasting . 

It is evident that no definitive conclusion can be 

reached on the analysis accomplished . However, it may be 

possible to indicate an example or model that can serve to 

the researcher to de termine which type of data selection and 

which method of analysis he should use to utilize his data 

optimally. 

Chapter II and III summarize literature on weighted re-

gression and model validation. Chapter IV and V present a 

new method of weighted regression and model validation meas-

ures respectively. Chapter V presents empirical results. 

Chapter VI is a summary. 
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CHAPTER II. THEORY OF UNWEIGHTED AND 

WEIGHTED REGRESSION 

Unwe ighte d Regressio n 

The model of regression tries to explain observed changes 

in a dependent variable (Y) as a consequence of changes in the 

independent variables (X1 ,x2 , ... ,Xk). The functional rela-

tionship among the variables can be written as: 

( 2 . 1) 

where 

£ : is a random variable called residual or error; this 

error is due to the fact that a perfect explanation 

of the dependent variable cannot be expected from 

the independent variables. 

If the relationship among the variables is a linear func-

tion, then the model can be expressed as: 

If there are t observations on Y and each variable X. ; 
l 

i = 1,2, .. . , t. The model becomes: 

where: 

( 2 . 2) 

( 2 • 3) 

Yi is the i-th observation of the random dependent 

variable. 
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X .. : is the i-th known value of j-th explanatory Jl 
variable. 

£ i and Xj: are independent for all i and j. 

x1 : is a dummy variable with value one . 

s . : is the j-th parameter and is to be estimated from 
J 

the data. 

s.: is a random variable with expectation zero, common 
l 

variance Var(si) = o2 for all i, and Ei and Ej are 

independent for all i and j . 

In matrix notation the model is written as: 

y = XB + E 

where: 

Y: is a t x 1 matrix . 

X: is a t x k matrix and rank k <t . 

B: is a k x 1 matrix. 

£ : is a t x 1 matrix. 

The assumption that the errors are statistically inde-

pendent and have variance o 2 can be expressed as: 

E( s s ') ( 2. 4) 

where: 

E( means expected value and It is a t x t identity 

matrix. 
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The property of equal variances is commonly ref erred as 

Homoscedasticity. 
" The Least Squares estimate of B is the estimate B 

which minimizes the residual sum of squares . 

t 
E 

i=l 
e. 2 = e'e = (Y- XS ) ' (Y-X~ ) 

l 

" Minimizing e'e with respect to B yields the Least 

Squares estimator, which is found to be: 

S = (X'X)-l X'Y 

The variance of B is: 

" 2 - 1 Var( B) = a (X'X) 

( 2 . 5 ) 

( 2. 6) 

An unbiased estimator of the residual variance is: 

s2 = 

Then 

e'e 
t-k 

( 2. 7) 

These estimators are both unbiased and consistent when 

the least Squares assumptions are met. 

The total sum of squares is: 

SS(TOTAL) = Y'Y - tY 2 
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The total sum of squares due to the regression is: 

SS(REG) = B'X'Y - tY2 

The residual sum of squares is: 

SS(RES) = SS(TOTAL) - SS(REG) 

2 Thus, the mean square residual (S ) can be also ex-

pressed as: 

8 2 = SS(TOTAL) - SS(REG) 
~k 

The coefficient of correlation is defined as the square 

root of: 

R2 = SS(REG) 
SS(TOTAL) (2.8) 

2 A value of R close to unity means that the regression 

equation highly explains the variation of the dependent 

variable, an R2 close to zero indicates that almost none 

of the variation on Y is explained by the independent vari-

ables. 
2 The use of R presents two major problems: First, it 

is assumed that the model is correctly specified, which is 

not necessarily true. Second, the addition of new explana-

tory variables increases the value of R2 . This can be re-

l d b . -2 . d f 2 -2 so ve y using R instea o R . R also accounts for the 

number of degrees of freedom. 
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This statistic is defined as : 

-2 Var (e) 
R = l - Var (Y) ( 2 • 9) 

The expected value of Y, given a fixed set of x. 's , 
J 

,... 
Y* = X*B 

where: 

Y* : is a forecast of Yt for the same period X*. 

X*S : is the best linear unbiased estimator (BLUE) 

for Y* . 

The estimate variance of Y* is : 

(2 . 10 } 

Let ? denote the actual va lue of Y for the period of 

forecasting . 

Then the forecast error is given by: 

e = Y* - Y f 

Under the assumption that the e lements of £ * are un-

correlated with £ , i . e . 

The estimat or of the variance of the forecast erro r is : 
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VAR(ef) = s 2 [X* (X'X)-l X* ' + ll (2.11) 

There are two parts in this variance: 

1 . Sampling error of the LS coefficient estimator. 

2. The random error ef in the future observations. 

To these two sources of forecasting error should be added two 

more: 

3. The random nature of the additive error process 

guarantees that forecasts will deviate from true 

value, even if the model is specified correctly 

and its parameter values are known with certainty. 

4. Error of specification in the model. 

It can be shown that forecast error variance i s mini-

mized when all the new observations on the independent vari -

ables are equal to their mean values. The value of this is: 

when t becomes sufficiently large, that is to say, the number 

of observations is very large, the variance of the forecast 

error approaches the variance of the error term. 

The assumption that £ has a normal distribution with 

mean zero and matrix of covariance cr 2It implies that Y follows 

a t-variate normal distribution with mean vector X8 and co-

variance matrix cr 2 r. Thus B is normal with mean vector 8 and 

covariance matrix cr 2 (X'X)-1 ; this allows us to derive confi-

dence regions and tests of hypotheses. 
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These estimates accord with the maximum likelihood 

estimates. 

Weighted Regression 

Weighted regression has been developed by several 

authors according to different assumptions on the model; 

thus, it is possible to consider five cases: 

1. The weighted regression as a consequence of the 

violation of the assumption that the residuals have 

a common variance. This is known as "Heterosce-

dastici ty''. 

2. The weighted regression as a method of estimation 

which allows us to assign more importance to some 

observations than to others. 

3. The weighted regression as a consequence of the 

variables in the regression equation being measured 

with error. That is called "Errors in Variable 

Model". 

4. The weighted regression as a consequence of random 

coefficients. 

5. The weighted regression as a consequence of esti-

mating rational functions. 

Let's be more explicit about each case in the next pages. 
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Case A: Heteroscedasticity 

This is a common issue that appears in econometric 

books; for reference this can be seen in Theil (40, p. 244), 

Johnston (22 , p . 214) , Draper and Smith (7, p . 77), etc. 

The assumption that the covariance matrix is : 

2 E( e:e: ' ) =<J n 

instead of: 

where: 

n is a symmetric positive definite matrix of order t . 

This assumption leads to what is called the Generalized 

Least Squares Estimator (GLS) of S in the model 

Y = XS + e: 

For obtaining this estimator, it is necessary to transform 

the observation matrix [Y X] so the variance matrix is cr 2 r . 
Let T be the matrix transformation such that !T l r 0 and 
-1 n = T ' T. The transformation leads to: 

TY = TXS + Te: 

The Least Squares Estimator of S is the estimator b which 

minimizes the sum of squares 
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e'T'Te -1 = e' n e = (TY-TXb) I (TY-TXb) 

differentiating the last expression and equating it to zero, 

b is found to be 

b = (X'T'TX)-lX'T'TY ( 2 .12) 

(2.13) 

This estimator b of S, is the Best Linear Unbiased 

Estimator (BLUE). 

The covariance matrix is: 

b . d · t of cr 2 An un 1ase est1ma or is: 

s2 = 

From this, an unbiased estimator of the covariance 

matrix of b is: 

If n is a diagonal matrix, say, 

where: 

h. >O 
1 

and which are, in general, different; then: 

(2.14) 
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v = cr 2n is also diagona l , 

V can be written as: 

V = diag( cr 2h 1 , a 2h 2 , . .. , a 2ht) 

where: 

w. 
1 

Thus , the errors s . are uncorrelated but have different 
1 

variances . This situation is ca l led Heteroscedasticity . 

The transformation matrix T applied to the data [Y X] 

reduces the model to: 

k B .x . . E: • 
y. I .;w-:- E J J1 + 1 (2 . 15) = 

1 1 j=l .;w-:- .;w-:-
1 1 

for i = 1 , 2 , 3 . . . t 

In this way, the values of each observation are weight e d 

inversely proportional to the standard deviation of the 

corresponding residuals . This is called Weig hted Leas t 

Squares . 

The normal equations are of the form : 

t t t 
E h . X. .Y. = bl E h . x . . x . 1 + bk L: h.X . . X.k 1 1J 1 1 1J 1 • • • I 1 1 ] 1 i i i 

for j = 1,2 , 3, ... ,k 

Johnston (22, p . 212) shows how to use the GLS model 

for predic tion . 
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If X* is a vector of known value s o f t he exp lanatory 

variables, the value of the dependent variable wi ll be: 

Y* = X* S + e: * 

where: 

e:*: is the unknown value of prediction disturbance. 

It is assumed that: 

E( e: *) = 0 

and 
2 = <J * 

If the residuals e: and e: * are uncorrelated for the 

purpose of prediction it is necessary to use b, GLS esti-

mator of S. 

The covariance matrix of the prediction disturbance 

with the sample disturbance can be expressed as: 

where 

VAR 

Then the best unbiased prediction is: 

Y* -1 = X*b + z2lzll 

(2.16) 
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and 

e = Y- Xb 

The prediction error has two parts when the Least 

Squares estimation is used , one error due to the sampling 

error, and another due to neglecting the future disturbances. 

The points expressed about the hypothesis testing and 

confidence intervals are still applicable when the original 

observation matrix [Y X] is replaced by [TY TX] , where T 

satisfies T~T = a- 1 . 

b will be normally distributed with mean vector B and 

covariance matrix 

(2 . 17) 

The consequences of ignoring the different weights 

assigned to each variance and of estimating the parameters 

using OLS are two-fold. The estimates of the parameters are 

unbiased and consistent but have higher variances than the 

Least Squares estimators and the estimates of variances are 

biased; that is , as rt is expressed by Pind±ck ana R.ub.tn-· 

feld (30, p. 96): 

. ordinary least squares estimation places more 
weight on the observations which have large error 
variances than those with small error variances. 
The implicit weighting of ordinary least squares 
occurs because the sum of squared residuals asso-
ciated with large variance terms is likely to be 
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substantially greater than the sum of squared resid-
uals associated with low variance errors .. 

Case B 

The weighted regression can be considered as a method of 

estimation which allows us to assign more importance to some 

observations than to others. Commonly in economic series, 

some observations have a behavior quite different from the 

rest of the other observations, but omitting these observa-

tions because they do not follow the behavior of the larger 

part of data, does not seem the most reasonable procedure. 

Sometimes, these obs-ervations reveal or indicate a 

peculiar activity in economy; i.e., the economic changes 

which were present in the Second World War or more recently 

the economic adjustments due to the increase of the oil 

prices. 

A procedure frequently used is to estimate the regression 

equation and look at the residuals, and omit the observation 

with large residual; but this leads to discarding the standard 

errors and the confidence intervals constructed before. 

Fisher (10, p. 13). chose thrs procedure, preferring mean~ 

in9ful results of little precision to precise results of 

little or no meaning; but, if the model constructed fs going 

to be us-ed for forecasting, results with little or no pre-

cision are not very reliable. 

Turning points is a criterion broadly used for validating 
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econometric models; but, as it was suggested by Ladd, (25, 

p . 1) this would indicate that some observations are more 

important than others. Thus, the assignment of different 

weights to different observations would lead to a weighted 

regression. Also, if it is assumed that the residuals are 

uncorrelated (the matrix of weights is diagonal) this would 

be a case of Heteroscedasticity. Therefore, it is possible 

to question the validity of omitting observations because 

they are considered as "unusual " . 

This concern about the importance of some observations 

and, hence,. the weights which should be assigned to each 

one , have led to alternative forms of estimation for the 

parameters in the regression equation. The robust re-

gression , for example, as developed by Huber (19, p. 799) 

is one of them. Several works have shown, Andrews et al. 

(3, p. 89), and Chow (5 , p. 663), that the method of Least 

Squares may be far from optimal if the distribution has 

large tails . Huber (20 , p . 1041) indicates : 

. just a single grossly outlying observation 
may spoil the least squares estimates and more-
over outliers are much harder to soot in the re-
gression than in the simple locati~n case . 

Based on this, Huber suggests minimizing: 

t k 
L: [ f' (Y. - l: X .. f3 .)] = 

i =l l j=l l) J 

t 

i 
E f( s . ) 

l 
( 2 .18) 
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where: 

t2 2 for I e: · I < rn e: . 
1 1 

f ( £. ) 

= rn.f e:i I 
(2.19) 

1 2 - 1/2 rn for I e: ·I > rn 
1 

rn being a predetermined constant, if m = 00 , the estimation 

procedure is reduced to OLS. This is obviously a method of 

weighting the residuals. 

where 

The normal equations have the form: 

t Y.-z:x .. s. 
E h ( 1 lJ J) X. . = 0 

i=l cr l.J 

£, 

d = h(cr1
) = max[-m, min(m, e: i)] 

The residual variance is found to be: 

1 ~ h[ e:i ]2 
t-k ~ cr 

1 

(2.20) 

Since the method of OLS gives more weight to the large 

fluctuations and bends the fitted regression into them to 

the disadvantage of the smaller fluctuations, it has been 

suggested to minimize the sum of absolute errors, the reason 

being that large deviations are not compensated dispro-

portionately at the expense of smaller ones. This kind of 

estimator is defined as L estimator, which minimizes: p 
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p = 1, the estimator is called Least Absolute Residual 

(LAR) • 

p = 2, the estimator is OLS , thus the LAR estimator 

minimizes: 

t £. 
2 

s = L I £, I = L [~1 l . 1 .l. £. .i= 1 

2 = L W.£ . 
1 1 

(2.21) 

where: 

w. = 1/ I£. I 1 1 

Thus , the extreme deviations are almost ignored; this is 

clearly a weighted Least Squares problem. The solution to 

this problem can be faced as an iterative process using the 

reciprocal of the absolute values of the residual obtained 

by OLS as initial estimates of W's and then , to minimize: 

t 2 
E W. £ . , and repeat the procedure. 
. 1 1 
1 

In a second estimator, the weights are defined as: 

[ 

[l-(zi)2J2 
W. = Kl 

1. 

0 otherwise 
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K1 = 6 and K2 = m/.6745, where mis a median of abso-

lute values of the residuals. 

These two methods of solution were suggested by Tukey 

(42) and used by Fair (9). Another solution, utilized by 

Fair, is to use OLS for small residuals and LAR for large 

ones. Once more the starting points are the residuals ob-

tained by applying OLS. 

A problem, which appears when this kind of estimation 

is used, is the construction of confidence intervals and 

hypothesis testing, since it is necessary to assume a 

distribution of the errors different from normal , the diffi-

culty of constructing sample distribution of these esti-

mators is present. If it is assumed that the absolute values 

of the residuals are distributed according to a double 

exponential distribution, then it is possible to obtain a 

maximum l i kelihood estimator which is equal to a LAR esti-

mator; hence, these estimators will have all of the proper-

ties of ML estimators. Thus, the difficulty of constructing 

confidence intervals and tests of hypothesis is eliminated. 

Several authors have proposed different distributions 

which all seem plausible thus the question about which 
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distribution should be assumed remains. 

case C: Errors in variables model 

The weighted regression can be considered as a conse-

quence of the fact that the variables in the regression 

equation are measured with error. The use of a simple re-

gression model , instead of a multiple regression one, will 

help to develop this idea. The exposition of Errors in 

Variable in a more general form can be seen in Fuller (14), 

or Zellner (44) . 

The model , in vector notation, for a sample of size t 

is: 

where 

Y· = Bo + Bl xi 1 

x. = x. + µ . 
1 1 1 

Y. = y . + £ . 
1 1 1 

x. and y.: denote true values. 
1 1 

x . : 
1 

denotes observed values on x . . 
1 

µ. : represents the measurement errors 
1 variables. 

£. : 
1 

represents the measurement error 

x . ' s 
1 

are unknown. 

The assumptions for this model are: 

(2 . 22) 

in the x. 
1 

in y . . 
1 
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x . is fixed, that is , there is a true relation, 
l 

with no error in the equati on; this kind of model 

is called "functional". 

2. measurement errors µ . are distributed as inde-
1 

3. 

pendent normal with: 

E( µi) = 0 

Var(µ . ) = 
l 

a u 
2 

µ. : are independent of x . and £. , 
l l l 

2 £ i are independent normal (0, a£ ) . 

The likelihood function for the parameters 80 , 81 , 

a£ 2 and xi is given by: 

L = A + 1 
t t 

au a£ 
exp[- ~ (X-x) '(X-x) 

2a L-
u 

2 
(J U I 

2al2 (Y-q 80-x81> ' (Y-q 80-x81)] 
£ 

(2. 23) 

where: 

8 ' = <S o, 81> 

x' = (x1 , x 2 , ... ,xt) 

Y ' (Y1 ,Y2 , ... ,Yt) 

X' = (X1 ,x2 , ... ,Xt) 

q: is a t x 1 column vector with each element 
equal to 1 . 

The maximization of the likelihood only requires 
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minimization of the term in square brackets in L* = ln L. 

One more time the weighted regression is relevant, each com-

ponent of the sum of squares is weighted inversely propor-

tional to the size of the error variance. It is easy to 

make the analogy with the maximum likelihood estimators for 

OLS. 

Ifµ._ 0, this leads to OLS and it makes no difference 
l 

whether £. is an error in the equation, is a measurement 
l 

error, or both. 

The determination of the estimators, see Zellner (44, 

p. 120, leads to: 
2 a 

S1 = £ 
~ a µ 

A problem arises because, with each additional obser-

vation on (Y.,X.), it is necessary to estimate one addi-
1 1 

tional parameter x.. That is to say, the number of 
l 

parameters estimated increases with the sample size. Then, 

one more assumption is required, namely, that the ratio 

of the error variances is known a priori. 
2 a 

A = ~ is known, 
a µ 

the likelihood function is: 
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1 1 1 L =A~ exp - {~{~[A (X-x) '(X-x) 
cr e: 2cr 2cr e: e: 

+ (Y-q80-xs 1 >' (Y-q80-xs 1 ) l 1 (2.24) 

On differentiating L* with respect to the unknown 

parameters, and setting these derivates equal to zero, the 

following simultaneous equation system is obtained: 

oL* 1 aB° = - 2 (Y-qB0- xS 1 )q = o 
O a e: 

oL* 1 aB = -2 (Y-qB0-xB1 ) x = O 
1 a e: 

oL* 1 ax- = - 2 [A (X-x) + (Y-q B0-xS1 )] = O 

oL* acr-e: 

a e: 

= - E + ~[A (X-x) '(X-x) + (Y-q B0-xB1 )' 
a e: a e: 

(Y-q80-x81 )l = O 

These partial derivates of L* contain variances as weights. 

Solving these equations, it yields: 

A A 2 2 
BlSXY - Bl (Sy - ASX ) - ASXY = 0 

From this: 
2 2 2 2 1 / 2 S 2- AS + [(S - AS +4 ASXY)] 

A y x y x 
81 = 2SXY 

(2.25) 

" Bo = Y - B1x 
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where: 
2 2 SY , SX , and SXY are the sample moments . 

The choice of the positive sign of the square root is 

justified since this 

tion . The knowledge 

leads to a 
2 

of cr£ and 

maximum of likelihood func-

cr 2 permits the construe -µ 
tion of approximate confidence intervals and hypothesis 

testing . This is not possible when only A is known. 

If x. is considered a random variable the model becomes 
l 

what is called a structural model; the estimators of 80 and 

81 for this kind of model have the same characteristics a s 

for the functional models . 

What is relevant to this analysis is that the errors in 

variables model can be thought of as a weighted regression 

model where the weights are inversely proportional to size 

of the error variance . 

Case D: Regression models with random coefficients 

Many times , it is convenient to consider models with 

random coefficients; this is justified in studies on cross 

section data in which the parameters are not homogeneous 

among different cross section units. 

The Engel curves is a typical case , Fisk (11, p . 266) 

points out that: 

Indeed , insofar as a regression model adequately 
describes the observed heteroscedasticity , infor-
mation on the variability of the regression coeffi-
cient should be as important to the applied 
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economist as information on the mean values of 
those regression coefficients ... 

On the other hand, in the estimation of an econometric 

model obtained from a problem of maximization or minimiza-

tion, the involved variables determine the parameters of 

the model: hence, changes in these variables affect the 

parameters and this will lead to an econometric model with 

random coefficients. This aspect is truly important when 

the involved variables are policy variables and it is 

necessary to analyze the effects of economic policies. 

Nelder (29, p. 3a3) developed this model with random coeffi-

cients. 

Let the model be: 

Y. = Ba· + B1 . x . 1 1 1 1 

where: 

Bai and Bli are normal randomly distributed with means 

and variance matrix: 

2 
aB a 

a BaB1 
Var( Ba, 81 ) = 

a cr82 B1Ba 1 

Thus, the distribution of Y. given x. is also normally 
1 1 

distributed with mean: 
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1 

27 

2 2 2 0 0 + 20 0 0 X. + 0 0 X. 
µO µOµl i µl i 

The logarithm of the likelihood function, L* is the p r opor-

tional to 

2 2 - E [ln( o 0 + 2 x. + 0 0 X.)] µo 0 s B 1 µ1 1 
0 1 

(2.26 ) 

where A is a constant. 

The normal equations are obtained b y differentiating L* 
2 with respect to s0 , s1 , 0 8 and 081 80 ; this p rocedure 

0 
leads to: 

EW. (Y.- 80- 81X.) = Ew.e . = 0 1 1 1 1 1 

where : 

EW. X . e . = 0 
1 1 1 

2 EW. ( 1-e. W. ) = 0 
1 1 1 

(2.27) 
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w. = 
1 

1 

2aB B 
0 1 

28 

2 2 + (JQ x. 
µ 1 l. 

(2.28) 

The knowledge of 2 
a B , 

0 
would imply a problem of 

weighted regressionA 

The transformation of the variances by doing: 

2 A sin 2 e a B = 
0 

2 A 2 e a B = cos 
1 

(J 

BoB1 = A sin e cos e sin <I> 

A > O 

o < e 2.. 7T/2 

- rr/ 2 2_ cf> 2_ n/2 

gua~antees that the variance matrix be positive (semi)-

definite 

= sin cf> , and A is a scaling factor. 

Using this transformation, L* may be expressed as: 

2 t t w~ ( Y . - B 0 - B 1 X . ) 
~ ln(W*/ A) - i 1 1 1 + A 
i i i A 
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where: 

[ . 2 . . 2 2 ) - 1 
w~ = sin e + 2x. sin e cos e sin cp + x. cos e 

l. l. l. 

a maximum occurs when: 

t 2 z: W'!te . 
i l. l. 

;x_ = t 

This result reduces the estimation procedure to maximize: 

t t 2 
Z: ln W~ - t ln[ Z: W~(Y .- 80 - s 1x.) ] 

l. l. l. l. i i 
(2.29) 

which can be considered a weighted least square problem . 

The method for maximizing the above expression is to 

start with initial estimates of e and cp for obtaining esti-

mats for 80 , s1 and £ i ' and a searching p rocedure is us e d 

for reaching a maximum. 

Similar models have been developed by other authors , but 

commonly they present substantial computational difficulties. 

This kind of model is very important because its c har-

acteristi cs are representative of several economic situations. 

Case E : Estimation of parameters in a rationai function 

This problem is considered by Turner et al. (43, p. 

120) • 

Although their aims are toward the solution of practical 

biological situations , rational functions can be used for 
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describing any asymptotic process in general. 

The model can be expressed as 

y = F(X} + £ 
GOO"" 

Where: 

F(X) is a polynomial of degree n 

G(X} is a polynomial of degree k 
2 £: is normally distributed (0, crI ) 

E ( £ . £ . ) = { 02 
l. J ~ 

0 

for i = j 

for i :f j 

It is assumed that: 

Thus the expression for Y becomes: 

(2.30) 

- 2 If [G(X)] was known, the last expression would lead 

to the estimation of a weighted regression equation. 
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In matrix form t h e model can be written as: 

1 n 
xl .. . xl 

k 
xl Y 1 · · · xl Y 1 

1 n 
x2 .. . x2 

k 
x2 Y 2 · · · x2 Y 2 

x = 
1 n 

xt . . . xt k 
}(tYt .. . XtYt 

The matrix weight W 

- 2 - 2 - 2 W = diag(G1 , G2 , .. . Gt) (2 . 31) 

The estimat ion procedu re can be accomplished by using an 

iter ative process. Preliminary estimates of B' s are utilized 

for obtaining p r ovisional weights for computing improved 

esti mator on n ' s and B ' s, new weights are found and the 

process is repeat ed until stable val ues are found . After 

the last iteration the estimator vector of the parameters 

is given by : 

VAR( S ) = (X ' WX) - 1s 2 

wher e : 

8 2 = Y ' WY- S ' X ' WY 
t - k- n-1 

(2 . 32) 
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Asymptotic confidence limits for each coefficient can 

be obtained by using: 

"' t I c .. s2 
n· + i = 0,1, .. . ,n l c ll 

"' t I c . . s2 13 • + i = 1,2, ... , k 
l. c l.l. 

where: 

C .. is the i-th element in the diagonal of (X'WX) and 
11 

t is the critical value for a Student's t with 
c (_t-k .... n-1) degrees of freedom. 
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CHAPTER III. MODEL VALIDATION 

There are t h ree major methodological positions concern-

ing the problem of verification in economics. These three 

positions are: Rationalism, Empiricism, and Positivism. 

From the point of view of Rationalism the problem of 

verification is viewed as a problem of search ing for a set 

of basic assumptions underlying the behavior of the system 

of i nteres t . 

For Empiricism and in particular for T . W. Hutchison 

(21) the validity of a model depends on the validity of the 

assumptions on which the model is based. 

Milton Friedman (12) , as a representative of the 

Positi vism position, argues that the validity of a model 

shoul d be judged by its ability to predict the behavior of 

the variables . 

Since econometric models are constructed for particular 

uses and specific tests are designed for their validation , 

Dhrymes et al. (6, p . 310) and Shapiro (35, p . 253) have 

pointed out that model validation is problem- dependent or 

decision- dependent . 

Thus the model can be valid for one purpose and not 

for another . 

The evaluation of an economic model involves two stages : 
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1. The stage referred to as the construction of the 

model. Several activities are considered in this 

stage: 

a . Formulation of hypothesis about the structure 

which the model is supposed to represent. 

b . Model selection: specification of variables and 

funct±onal forms , and the method of estimation. 

c. Hypothesis test which the model will be based 

on . 

2. This stage includes the evaluation of the econometric 

model as a whole. This second stage will be used 

in this thesis for evaluating the models chosen. 

Henceforth, the word evaluation will refer to the 

steps subsequent to construction of the model. 

Parametric Evaluation 

The parametric evaluation of an econometric model is 

based on statistical tests which are linked to the sto-

chastic specification assumed by the builder of the econo-

metric model . This parametric evaluation concerns both 

stages mentioned above. Statistical tests have been de-

signed for testing hypotheses on model selection, optimal 

parameter estimation, forecasting evaluation and structural 

stability of the model. Ramsey 's test (32, p . 351) may be 

used for testing for the presence of specification errors by 



www.manaraa.com

35 

comparing the distribution of the residuals under the al-

ternative hypothesis. The estimation of parameters can be 

improved if it is known that the parameters are subject to 

constraints. Aitchison and Silvey (2) developed a test in-. 
volving a Lagrange multiplier approach to the testing of a 

set of restrictions on the parameters being estimated. 

The availability of a small data set , not used in esti-

rnation, raises the possibili t y of checking the model after 

it has been estimated. 

Chow (4, p. 591) developed a test which may lead to 

the inference of structural change either because the coeffi-

cient vector 8 tn the model y = xa + £ , is different for 

each of the two sampled periods under investigation, or be-

cause the variance of £ has changed , or even for both of 

these causes. Jorgenson et al. (23 , p. 216), based on this 

Chow ' s test , develop two test statistics, one based on 

predictive performance and the other on structural change . 

The data which lies outside the sample period is utilized 

for gener ating forecasts of the dependent variable which can 

then be compared with the actual values of the dependent 

variables ; the test indicates whether the additional obser-

vations are from the same regression as those observations 

used in the sample period. 

This test of predictive performance is used for corn-

paring the error of prediction with errors of the fitted 
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function; this test is based on a prediction interval for 

the mean of m additional observations. This test is use-

ful in detecting error of specification. 

The test of structural change is more powerful from the 

statistical point of view than the predictive test. This 

difference arises from the fact that the predictive test de-

pends on the difference in the parameters for the period of 

fit and the period of prediction, and the difference of the 

residual variance; hence there are two components and the 

first one can hide the second one. In short, because the 

differences in the parameters are associated with errors of 

specification , the test for structural change is the best 

for detecting this kind of error. 

This predictive test can be extended to a forecast of m 

new observations on each of several endogenous variables 

using the reduced from of a linear simultaneous equation 

model; however the assumptions made are quite restrictive , 

i.e.; the equations of the system must be just identified . 

If the data set is considered to be quite big, it is 

possible to consider re-estimating the model . When this is 

the situation, the Chow's test gives the best results. The 

tests mentioned in this section are designed for testing 

hypothesis prior to "release" 0f the model, but this stage 

of the model building is not considered in this thesis. 

Ramsey's test, which would seem to be useful, assumes that 
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one of the models being considered is the true model; this 

is a strong assumption which is not considered at all in 

this thesis . On the other hand, a specific objective of 

this thesis is to evaluate estimation procedures, hence the 

application of these tests is not relevant to this work. 

Although the Chow ' s test can be used after the "release" 

of the model , the availability of a data set of new observa-

tions is also not taken into consideration in this thesis. 

Nonparametric Evaluation 

The evaluation process is defined to be nonparametric 

if it is not derived from stochastic assumption of the model. 

There are several criteria based on this kind of evalu-

ation: 

Historical simulations 

The primary criterion for judging the validity of a model 

is its power in explaining the observed data . Performing a 

historical simulation and examining how closely each esti-

mated endogenous variable tracks its correspondent historical 

data series , may be the most useful criteria for evaluating 

a model. 

When it is necessary to compare different types of func -

tions, it is common to use a relative measure of fit (such 

as R2), but it is logical to think that the fit will be better 
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in the sample period than outside the sample period, which 

indicates that this criterion should not be considered 

as the best one. 

A sudden change in the historical data (turning point) 

is an important criterion for the model evaluation. If it 

is desirable that a model simulates the turning points, then 

this would seem to suggest that it would be convenient to 

consider that there exists some observations which are more 

important than others. This fact can be used for assigning 

different weights to different observations. This would 

lead to using weighted regression instead of classical least 

squares estimation. 

The number of turning points in a time series can be 

used for testing the hypothesis that the series are random. 

Many turning points would indicate that the functions are 

not due to change alone. 

This is not convenient for testing the hypothesis of 

linear trend series; the number of turning points is in-

different to the presence of a trend. A better way is to 

test the significance of the correlation coefficient or use 

the rank test (T). 

Nonstochastic A historical or ex-post simulation 

is called nonstochastic if the assumption is made that 

additive error terms are zero in each estimated equation in 
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each observation period . The estimated coefficients are 

treated as if they are correct ones. 

The application of nonstochastic simulation to nonlinear 

models yields results which are not consistent with the re -

duced form . 

Stochastic A stochastic simulation is done if , for 

each equation of the model, a probability distribution is 

assumed for the additive error term or for each estimated 

coefficient . 

Since the coefficients are random variables and each 

equation has an additive error term associated with it , 

the stochastic simulation allows us to recognize the random 

character of the model . 

The nonstochastical and stochastical simulations can be 

either static or dynamic. 

Response to stimuli 

The question which arises here is how the model responds 

to large changes in the exogenous variables or policy 

parameters. 

These responses should be consistent with the economic 

theory and with empirical observations . Researchers have 

sometimes an idea of the range of variation of a specific 

coefficient. But the use to be made of this information 

depends on the preferences and experiences of the researcher 
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and the actual needs for the user. 

Using multipliers, it is possible to predict the ef-

feet of fiscal policy or deviations from any basic predic-

tion p ath. It is easy to find the impact multipliers for 

a linear system but this is static value and does not show 

the accumulated effect if the change is sustained over many 

periods and it is assumed that only one exogenous v ariable 

changes . Part of these limitations can be relaxed by using 

dynamic multipliers. 

Predictive ability 

It has been expressed by Dhrymes et al. (6) and Sha-

piro (35, p . 255) 

• the evaluation of the predictive ability of 
the model is essentially a goodness of fit prob-
lem. 

This criterion has been considered powerful for validating 

a model. 

The goodness of fit can be overstated when the economist 

considers a wide range of alternatives and selects the one 

that fits best. 

Jorgenson et al. (23, p. 215) shows that the likelihood 

of achieving any predetermined level of goodness-of- fit can 

be made arbitrarily close to unity by expanding the range of 

alternatives considered, but makes clear that there exist 

two facts which are necessary to consider: 
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1 . The research does not have many alternatives . 

2. The test statistics for alternative specifications 

are not independently distributed , which violates 

one of the assumptions used . 

These two facts make it difficult to achieve an optimal level 

of goodness- of- fit . 

A forecast or prediction is generally defined as a 

statement concerning future events. It is possible to 

consider two kinds of forecasts: 

1. Ex-post forecast in which the forecast period is 

such that the observations on both endogenous and 

exogenous variables are known with certainty. 

2. Ex- ante forecast in which the explanatory vari-

ables may or may not be known with certainty. This 

sort of forecast predicts values of the endogenous 

variable beyond the estimation period. 

A forecast is unconditional if all the values of the 

explanatory variables are known with certainty; otherwise 

the forecast will be conditional . 

It is possible to consider two aspects in the evaluation 

of forecast performance: 

1. Subjective: the evaluation is carried out by taking 

into consideration the capacity of the model to 

predict turning points , the size of the errors . It 
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would be desirable to detail the sources of devia-

tion from realized values. 

2 . Objective: the criterion of forecast performance 

can be defined in terms of a loss function of the 

users of forecasts. 

A main goal sought by researchers is to forecast turning 

points or predict the magnitude of change. Theil (39, p. 

22) indicates two kinds of errors in predicting turning points: 

1. A turning point is predicted but there is no actual 

turning point. 

2. There is a turning point but it was not predicted 

before it happened. 

Obviously, a test of a model's performance in predicting 

turning points is clearly important in overall appraisal. 

If a turning point is correctly predicted this indicates that 

the critical dynamic elements have been taken into account 

and the model is reliable when economic a ctivity experiences 

changes in direction. 

This kind of test can be applied with varying degrees 

of rigor. One case would be that all turning points must be 

correctly forecast, that would imply that the possibility 

of rejecting the model would be very high . An alternative 

criterion is that forecast shows a directional change in the 

neighborhood of the actual turning point. The latter cri-

terion is less rigorous than the first one. 
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Stekler (37, p. 724) develops one hypothesis to explain 

why the turning point errors in the neighborhood of cyclical 

peak might have occurred . 

Using the Bayesian approach, he assigns subjective 

possibilities to the likelihood of a cyclical turn. He esti-

mates , based on information from economic indicators, the 

probabilities of occurrence of a signal from an indicator 

given a turn or given no turns; from this he obtains, using 

the Bayes' theorem, the probability of a turn given that a 

signal from an indicator has been received. 

This analysis faces the problem of assigning probabili -

ties to an event and the choice of the indicator . 

3 . Accuracy of the forecast. 

Several measures can be used for comparing the pre-

dictive values of the endogenous variables with their 

actual values . 

1. Mean Square Error 

This method is defined by Mincer and Zarnowitz (27, p. 

7) as: 

MSE = E(A -F ) 2 
t t 

where: 

At : is the actual value . 

Ft : is the forecasted value. 

( 3 .1) 
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It is based on a quadratic loss function, namely, 

which represents the loss resulting from the forecast Ft 

when At is a true value. This loss function leads to the 

estimator with a minimum second order sampling moment around 

the true value. MSE can be also expressed as: 

T 
MSE = E 

t=l 

where: 

T: is the number of observations. 

(3.2) 

The MSE is a measure of dispersion around the line of 

perfect forecasts (LPF) . This LPF is a 45° line through the 

origin, which is used for analyzing absolute forecast 

accuracy. Plotting the actual and forecast values in a 

scatter diagram, it is possible to fit a straight line: 

This regression line should coincide with the LPF. 

Thus, MSE is equal to zero if all points lte on LPF. The 

forecast is unbiased if E(F) = E(A); the bias is defined as: 

E(µ) = E(A) - E(F) 

The larger the deviation of the slope of the regression 
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line from unity, the less efficient the forecast. 

The sample MSE can be decomposed as follows: 

2 - - 2 
MSE = S(A-F) + (A-F) ( 3 • 3) 

where: 

A and F are mean va lues . 

2 S(A-F) is the sample variance of the prediction errors. 

The MSE can be also expressed as: 

( 3. 4) 

where: 

then: 

s 2 and s 2 are sample variances. A F 

" B is the slope of the regression line. 

R2 is the coefficient of determination in the regression 
of A on F. 

- - 2 (A-F) is called mean component (MC) . 

(l-R2)s! is the residual component (MR). 

(1-B)s; is the slope component (MS). 

MSE = MC + MS + MR 

If the forecast is unbiased then MC = O. 

If the forecast is efficient then MS = 0. 

(3.5) 
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If the forecast is both unbiased and efficient then 
MC = MS = 0 and MSE = MR. 

MC and MS can be interpreted as the proportion of error 
resulting from systematic tendencies of the forecast 
system. 

Since the MSE and its components are calculated using 

a sample, they are subject to sampling variation, even if 

the estimates are unbiased and efficient in the population . 

It is possible to test unbiasedness and/or efficiency by 

testing the null hypothesis 

H ~ · = 0 0 . 8 = 1. 

A problem arises when the errors are measured in terms 

of levels , they can combine overtime; hence they fail to 

show the true magnitude of the error. A common solution to 

this problem is to express the errors in terms of changes 

instead of levels. 

If errors are going to be expressed in terms of changes 

it is necessary to choose the data that will be used. 

There is no ambiguity if the model predicts changes; the 

choice of the data is evident . But, if the model predicts 

levels of economic variables, there a re two ways to obtain 

the predicted changes data. 

1. Successive differences of the predicted levels 
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2 . Differences between the predicted values for a 

period and the actual values of a previou s period : 

The model' s ex- post forecast error with this approxima -

tion is the difference between the actual and the predicted 

level. 

Hence, the mean square error (3 . 2) would be identical, 

but the decomposition would be different ; the var iance and 

residual components would not be the same since the re -

gression would be 

instead of At on Ft. 

A problem arises when the predicted change (Ft-At-l) is 

compared with the realized change (At-At- l) , wher e At-l was 

not fully known at the time that the forecast was made . 

Only in the case where At is exactly known is the accuracy of 

the MSE for changes almost identical with the accuracy for levels. 

Mincer and Zarnowitz (27) developed a measure of 

relative accuracy . Their index of forecasting quality is 

the ratio of the mean square error of forecast to the mean 

square error of extrapolation (ME ) . The use of ME is 
x x 

justified since it is a relatively simple, quick and 

accessible alternative . 
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Denoting the relative mean square error by RM, then : 

( 3 • 6) 

if O<RM<l the forecasts are relatively superior to extra-

polation . 

Several objections can be made to the use of this 

technique. The use of a quadratic loss function, such as 

has been defined in expression (3.1), is justified in part 

because of its tractability, but its use implies that either 

kind of error (under and overestimations) is evaluated 

equally and high weights are assigned to the extreme errors. 
2 Although R is used as supplementary measure it is not 

a reliable guide for accuracy because it merely represents 

error explained by a linear adjustment of the forecast 

series . The MSE only evaluates forecasts in terms of 

systematic errors. 

Granger and Newbold (16, p . 281) developed a test for 

equality of expected square forecast errors , when there are 

two or more sets of forecasts of the same quantity. This 

test is very important for comparing two competing forecasting 

procedures and it is based on the usual test for zero 

correlation . 
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+ e ( 2 ) )( e (1) -e ( 2 ) ) 
t t t 

+ et(2 )) 2 t ( (l)_ (2))2)1/2 
t=l et et 

(3.7) 

where: e{i) is one-step-ahead forecast error of the same t 

quantity using the i-th (i = 1,2) prodedure. These errors 

are assumed to have a normal distribution with means zero, 

. 2 d 2 d 1 . ff . . variances crel an cre 2 an the corre ation coe icient p . 

The necessary and sufficient conditions of equality of 

the two expected square errors from the two forecasting 

methods are that the sample correlation coefficient between 

the two sets of errors forecasts (r), given by the formula 

(3.7), be zero. Rejecting the null hypothesis would indi-

cate that one procedure performed significantly better than 

the other. 

Granger and Newbold (16, p. 286) define a statistic for 

judging forecast performance. They insist on the use of 

predicted and actual changes instead of levels. 

Let Ft be a predrctor of At, and et be the forecast 

error, 

At = Ft + et 

If the forecast and error series are uncorrelated, 

it is possible to define PM as the ratio of error variance 

to variances of the series to be forecast, so that 
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2 a 
PM = e ( 3. 9) 
~ 
er A 

PM = 0 if F is a perfect forecast. 

PM = 1 if F is the mean of A for all t . 

If Ft is an optimal forecast, say 

E(At) = E(Ft) and Var(At) = Var(Ft) + Var(et) and 

is based on the particular information set, PM can be 

considered as a measure of the predictabili ty of a time 

series. 

If F and e are uncorrelated, PM 

where 

2 = 1 - p • (3.10) 

p : is the correlation coefficient between the actual 
and forecast values . 

The probability that the forecast and actual series 

will have the same sign if they have zero mean , is given by: 

P = 1/2 + (l/n )arc sin p = 1/2 + (l/~ )arc cos PM (3 .11) 

It is based on the assump tion that the actual and fore -

cast series are distributed as normal bivariate with correla-

tion p . 

2 . U-Statistic 

Theil (39 , p . 28) defines a measure that utilizes 

information about the absolute discrepancy between the 

predicted and actual changes. U is defined as follows: 
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u -Vt l i +Jtr~
2 

(3.12) 

where: 

Pt: is the predictor change. 

At: is the observed change. 

T: is the number of observations. 

U: is bounded: O<U<l 

{: if pt = At 
u = 

if pt = -bAt for b >O 

Theil (39, p. 28) modifies this statistic by signaling 

that in the U-statistics, the denominator depends on the 

forecast, hence the coefficient is not uniquely determined 

by mean square of prediction. He suggests the use of the 

U-statistics defined by 
T 2 
E (Pt -At) 

0
2 = _t _=_l ____ _ 

T 
E A 2 

t=l t 

root square of: 

It is called inequality coefficient 

(3.13) 
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U: is not upper bounded 

U: is equal to zero if Pt = At 

U: is equal to one when the prediction procedure 
leads to the same MSE as naive no change extra-
polation . 

MSE can be decomposed as: 

MSE = S~A-P) + (A-P)
2 

= (A-P) 2 + (SP- SA) 2 + 2(1-R)SPSA 

2 2 2 2 = (Sp- RSA) + (l+R )SA+ (A-P) 

where: 

(SP-SA) 2 is the variance component. 

2(1-R)SPSA is the covariance compoennt. 

(SP-RSA) is the regression component. 

(l-R2)si is the disturbance component . 
- - 2 (A-P) is the bias component . 

(3.14) 

The variance component gives an idea about the influ-

ence of the variance of the actual values. 

The disturbance component is the variance of the re-

siduals of the regression of the observed values on the pre-

dieted values. 

Dividing both sides of the two last equations by MSE 

yields two sets of proportions: 
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1 . The first one: 1 = J'1 + us + uc 

2. The second: 1 = lf1 + UR+ u0 

where: 

J'1, US and UC: are the bias, variance and co-
variance proportions respectively. 

R D U and U : are the regression and the disturbance 
proportions . 

Theil (39, p. 29} indicates that: 

- - 2 a. The term (A-P) = 0, if and only if the average 
predicted changes are equal to the average observed 
changes. 

b. The term (SP-SA) = 0, if and only if SP= SA, and 

c. The last term 2(1-R)SPSA = 0, if and only if R = 1. 

But Jorgenson, Hunter and Nadiri (23, p . 219), based on 

the predictive testing, point out that bias component has 

expected value different from zero. They say: 

Thus, even for the unique, minimum variance, un-
biased, linear predictor, there is no reason for 
the bias component to be zero .... 

There is also no reason for the variance component to 

be zero. They conclude that this criterion for evaluating 

a predictor is of no assistance in the predictive testing 

of an econometric model. 
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The 

MAE 

where: 

54 

Mean Absolute Error : 

mean absolute error {MAE) is defined as : 

T IYit-YPit l 
E 

t=l T 

is the actual value of the variable for the 
period t . 

(3.15) 

is the predicted value of the variable for the 
same period. 

This statistic is easy to compute and does not penalize 

the extreme errors highly . The MAE is highly correlated with 

the square root of MSE; this correlation is around .80 for 

normal and rectangular distribution. 

The correlation coefficient provides a guide to accuracy 

of forecast . Small or negative values of this coefficient 

diminish the confidence in forecast even when the mean error 

is small. 

The use of MAE is justified when the variable exhibits 

a steady trend : hence it is interesting to know how far 

above or below the actual trend line is the predicted 

series. In this way , the problem of positive and negative 

errors cancel ling each other is avoided . If t he errors are 

expressed in terms of changes , the mean absolute error can 

be expressed a s: 
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6MAE = E 

t=l 

where: 
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I (Yit-Yit-1) - (YPit-YPit-1) I 
T 

(3.16) 

is the observed value of the variables for the 
period (t-1) . 

YPi t-1: is the predicted value of the variable for 
the period (t-1). 

MAE and 6MAE are the same for the one-quarter ahead 

forecasts. 

4~ Other statistics: 

Other commonly used measures are based on percentages 

or percentages changes. The mean percent error (MPE) is 

defined as: 

(3.17) 

and the root mean square percent error (MSPE ) : 

MSPE = l/T E [ 1 1 ] 
~ T Y.t-Y·p 2 

t =l yit 
(3.18) 

The use of percentage c hanges is preferred to the first 

differences, since the former has the advantage of facili-

tating the comparison among different variables. On the other 

hand, where the variables experience growth or increasing 

trend, it puts the most recent changes more nearly on the 

sa,me level as earlier changes. Although the use of logarithmic 
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differences tend to make symmetrical decreases and increases, 

the changes are preferred because they are arithmetically 

simpler . 

It is possible, using the percentages and absolute error, 

to construct ~ similar measure to the inequality coefficient 

proposed by Therl (3.13). The ratio of mean absolute error 

to the mean absolute actual percentage change has this 

similitude: 

It measures the size of the error relative to the magnitudes 

that are being predicted . 

5. Control chart: 

The control chart is based on the assumption that the 

sum of the forecast errors should approach zero . The plot of 

the cumulative forecast errors can give an idea of how the 

model is an adequate representation of reality. Platt (31 , 

p. 598) points out: 

The non-zero sum of forecast errors would indicate 
either the choice of an inappropriate model to 
represent the systematic variations in the vari-
ables or as the result of shifts in the way certain 
variables are related. 

The control chart is the plot of the accumulative sum of 

forecast errors against time. It is possible to draw a 
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confidence band around zero; this confidence band is given 

by: 

KJl/T (3.19) 

where: 

K: is a predetermined integer. 

6. Spectral analysis: 

This is an infrequently used technique for evaluating 

econometric models. Spectral analysis can be used to obtain 

a frequency decomposition of the variance or covariance of an 

univariate or bivariate stochastic process respectively. A 

time series is considered as the observed behavior of a sto-

chastic process during some arbitrary time intervals. Thus, 

it is possible to use the procedure applied by Naylor et al. 

(28 , p. 333). This procedure is based on comparing the esti-

mated spectrum of a series generated by simulative experi-

ment with the estimated spectrum of the actual series as a 

mean of verifying the results of simulation . 

Another possibility developed by Howrey (17, p. 75) 

is to derive the implied spectrum directly from the model. 

This technique avoids making the computation needed to obtain 

the simulated series. 

Many economic variables are autocorrelated and inter-

correlated, i.e., correlated with other economic variables. 

Simulated values of economic variables are also autocorrelated 
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and intercorrelated. Spectral analysis can be used for 

analyzing intercorrelated and autocorrelated data by 

comparing their spectra. 
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CHAPTER IV. DETERMINATION OF WEIGHTS 

To weight the observations allows us to assign atten-

tion to the measures of the independent variables, so that 

the prediction is hopefully improved. Assigning different 

weights to different observations results from believing 

that some observations are more important than others. 

Several authors point out that the placing of more 

weight in the observations correspondent to those periods 

in which economic changes are unusual would improve the 

ability of the econometric model for forecasting, i.e. 

Howrey et al. (18). 

Thus, the assignment of weight to each observation is 

of capital importance. It is possible to see two cases in 

the weight assignment: 

1. The case in which the weights assigned are a 

function of the residuals. 

2. The case in which the weights assigned are inde-

pendent of the residuals. 

Case no. 1 can be seen as implicit in the estimation 

procedure, and/or according to different assumptions on the 

model. The five cases of weighted regression considered in 

Chapter II can be placed in this category. 

Thus, a conunon aspect to the estimation of models with 

a noncommon variance (heteroscedasticity), errors in vari-
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ables and random coefficients, is the fact that the value 

of the observations is weighted inversely proportional to the 

size of the error variance; hence the weights appear as a 

function of the errors. This is easily observed in the 

formulas (2 . 15, 2.23 and 2 . 26). the other two cases, Case 

B and D, are also assigned to this category because the pro-

cedure of estimation is accomplished by using an iterative 

process, once more, the weights assigned are a function of 

the errors . Even in the procedures developed by Huber (19) 

in which he suggests to minimize the expression (2 . 18); and 

in the definition of weights proposed by Tukey and used by 

Fair (2.21) the assignment of weights is not independent of 

the residuals. 

The second case is based on the premise that it is not 

necessary that large residuals should be treated with dif-

ferent weight than small ones . 

The condition of independence among errors and weights 

suggests a ''different" kind of weighting of the observations. 

One simple possibility would be to assign weights at random, 

but obviously this seems to be also one of the most un-

propitious. This kind of assigning is not convenient be-

cause: 

1. Each selection of random numbers is a selection of 

weights . 
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2. It would be necessary to make a decision about the 

correspondence between random number (weight) and 

observation. 

These two facts are contrary to the idea that specific 

observations are more important than others . 

Based on the effects of a change in the output and input 

price on the profit maximizing level of output of a competi-

tive, single-output, multiple-input firm, Ladd (25 , p. 9) 

finds that coefficients to be estimated for use in making 

the forecast are functions of current prices. From this he 

suggests that: 

If we are in period n and want to make forecasts for n+l, 
the "current condition" of the period n are the most 
important conditions to use. Sample periods in 
which the conditions were close to conditions in 
period n ought to be more important than sample 
periods in which conditions were greatly different 
from conditions in period n . , . 

This consideration leads to considering two possible 

measures of proximity as weights: 

b y : 

1. Temporal distance, where the weights are assigned 

w. 
1. 

= 1 
(t+l-i) 172 

where the denominator is the square root of the distance in 

the time of the observation from the period t + 1. 

The most recent observation has more weight than the 

earlier observations. To the last observation of the sample 
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period is always assigned a weight equal to one . The weights 

obtained by this form could be called temporal weights . 

for 

2 . 

\,Y . = 
l 

i <t 

Metric distance, the weights are given· by : 

1 
d(1 ,t) 

where: 

d ( i, t) 

being: 

2 1/2 = [E.(X .. - X.t)] J Jl J 

Xit : the i - th component of the vector of independent 

variables in the t-th sample period . 

The weights assigned by u sing metric distance depend on 

the data. 

For the last period the weight should satisfy : 

wt~ maxil/d(i,t)] 

but, it would be an arbitrary value which could be larger 

than one . The weights obtained by using metric distance 

could be called metric weights. 

In this way , the temporal and metric distances allow 

us to weight the observations such that the residuals and 

weights a re independent . 
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CHAPTER V. EMPIRICAL WORK 

The eMpirical work in this thesis is based on the 

analysis of six different econometric models. They were de-

veloped and published by different authors. The selection 

of these models for comparing unweighted regression pro-;·· 

cedures with the werghted regression procedure for forecasting 

is q~ite arbitr~ry and the only reason for choosing these 

models was the availabrltty of the data. 

The empirical work includes three aspects: 

1. The analysis of selected model, which involves: 

a. A general explanation of the purposes for 

constructing the model. 

b. Specification of the model: 

(1) Listing the variables explicitly included. 

(2) Stating the functional form of the 

equation. 

(3) The probability distribution of the error 

is assumed normal with mean zero and matrix 
2 of covariances a I. 

c. Data used in the estimation sample period. 

2. Estimation of the selected model according to two 

different procedures: 

a. Using unweighted regression procedures for esti-

mating the parameter in the model (OLS) . 
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b. Using weighted regression procedures with two 

kinds of distances as weights: 

(1) Temporal distances . 

(2) Metric distances . 

The metric distance considered as weight which was 

assigned to the l ast observation and which should satisfy: 

wt =max l/d(i,t) 

was determined by adding the two largest weights from p revious 

observations. The abbreviation TWR will be used to denote 

regression procedure using the inverse of the temporal 

distances as weights , and MWR to denote the regression pro-

cedure using the inverse of the metric distances as weights . 

1. The assumptions about the error distribution in the 

unweighted regression procedure (OLS) allow derivation of 

conf i dence region and hypothesis testing for the estimators, 

several measures on goodness-of-fit, and tests against auto-

correlation of the residuals. 

Let W be the weighting matrix, . then a weighted estimate 

of S is obtained by minimizing e ' We in the model Y = XS+ E 

with 

So, 

e ' We = (Y- Xb ) 'W(Y-Xb ) w w 
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where: 

The normal equations are: 

X'WX8 = X'WY w 

This can be written as: 

The estimator of 8w is: 

b = (X'WX)-lX'WY w 

(5.1) 

(5.2) 

( 5. 3) 

is unbiased and consistent estimator of 8 with 
covariance matrix equal to: 

( 5 • 4) 

It is not easy to derive the sampling distribution of 

these estimators because they are a function of the assigned 

weight, hence the use of t and F ratios for construction of 

con~idence intervals and tests of significant is not valid. 

Thus, the ratios of TWR and MWR coefficients to standard 

errors which are shown in several tables should be considered 

as descriptive statistics. 

From Equation 5.2 , it is clear that obtaining the esti-

mator is accomplished by multiplying the i-th row of [Y X] by 

the weight assigned to the i-th observation and running the 

regression. The data transformation eliminates the intercept 

term creating a new variable, namely X . = 11 W. . Since the 
l 
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regression equation is forced through the origin , the com-

puted residuals are uncorrelated with the explanatory vari-

ables; but it need not be true that re. = 0 because in that 
l 

kind of model the sum of the residual (r e. = 0) is not one 
l 

of the normal equations and the partition of the total sum 

of the squares about the mean into the total sum of squares 

due to regression plus the residual sum of squares no longer 

holds, in general. From this, comparison of R2 for the 

two regression procedures is invalidated . 

2 . The procedures for evaluating a set of forecas t s 

developed in Chapter II are of little assistance for judging 

the results obtained in this thesis. The reason for this 

affirmation is based on the way in which the forecasts are 

constructed . Since each forecast is one-step-ahead forecast, 

this implies that the weight assigned to a specific observa-

tion is different for each sample period ; hence, each obser-

vation added to the data changes the sample period. There-

fore , the temporal and metric weights also change. This pro-

cedure violates the assumption that the forecast values are 

generated by the same structure . 

This reason leads to designing new measures for com-

paring the forecasts constructed by using different re-

gress~on procedures. 

Let e. 'k =A .. k-F . 'k be a forecast error of i - th period 1J 1J 1J 
(i = 1,2), using the j -th (j = 1,2,3) regression procedure in 
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the k-th econometric model (k = 1,2, 3 ,4,5,6). Thus j = 1 

corresponds to OLS, j = 2 denotes TWR and j = 3 corresponds 

to MWR. 

1. A first measure may be based on reducing fore-

cast errors to a common value by dividing the forecast error 

by the variance of the endogenous variable and taking the 

arithmetic mean. This 

f or 

where 

and 

a . 
2 

= !_[eljk + 
2 2 

0 11k 

j = 1,2,3 

k = 1,2,3,4,5,6 

t 
= l E (Y.-Y) 2 

t-1 i=l 1 

t+l 
= !_t E ( y . - Y) 2 

. 1 1 1= 

Mjk will be equal to zero when eljk 

(5.5) 

2 = e 2 j k = 0 ( a < 00 ) , that 

i s to say, when the j-th procedure in the k-th econometric 

model gives a perfect forecast. 

So, smaller values of Mjk are preferred over larger 

ones. 
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b. 
2 2 

The geometric mean of the ratios eijk/crilk would 

seem to be an adequate measure for averaging these quanti-

ties. Thus, it is possible to define: 

2 2 
( e~jk) ( e~jk) 
0 11k 0 21k 

(5.6) 

for j = 1,2,3 

k = 1,2,3 , 4,5,6 

The use of a geom:tric mean is justified because it is 

not so heavily weighted by extreme values as is the arith-

metic mean . 

The interpretation of Gjk is similar to the Mjk. 

2 . Several others measures can be designed for com-

paring the forecast obtained by using unweighted regression 

with those constructed from weighted regression. 

a . The ratios of average square forecast error 

can be used for comparing the different forecasts with the 

forecast using unweighted regression. 

( 5 • 7) 

for j = 2,3 

k = 1,2,3,4 , 5,6 

Z 12k < z11k and z13k < z11k indicate that the weighted 

regression procedures perform better than the unweighted one, 
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also, the smaller value for Zljk would indicate which re-

gression procedure in particular (TWR or MWR) is better in 

terms of forecasting. 

b. A measure quite similar to formula (5.7) is 

the ratios of absolute average forecast errors. This measure 

has the advantage that large errors are not compensated 

disproportionately at the cost of smaller ones. 

for 

Thus, 

j = 2,3 

+ ie2jk l 

+ le21k l 

k = 1,2,3,4,5,6 

(5.8) 

The interpretation of this measure is the same as (S.3). 

3. An overall evaluation of the forecasts us i ng dif-

f e rent r e gression procedures can be accomplished by using 

the results obtained by applying the formulas 5 . 5, S.6, S.7 

and S.8 to each econometric model. 

a. Defining TM . as: 
J 

1 6 
TM . = b E M. k J k=l J 

(5.9) 

for 

j = 1,2,3 

where Mjk is given by S.S. 
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The decision rule applied to this measure is that the 

smaller value of TM. (j = 1,2,3) will indicate that the pro-
J 

cedure j has a better overall performance for forecasting. 

The same statement can be applied to the following 

measures: 
6 

b. TG . 
J 

= V:E: (5.10) 
J 

for 

j = 1,2,3 

1 6 
c. TZ .. = 6 E zijk (5.11) 

l] k=l 
for 

j = 1,2,3 

and 

1 6 
d. TAlj = b E Aljk (5.12) 

k=l 
for 

j = 1,2,3 

where Gjk ' Zljk and Aljk are given by the formulas 5.6, 

5.7 and 5.8 respectively. 

4. Based on the material exposed in Chapter II, it is 

possible to apply a statistical test for evaluating the 

capacity of the model to predict turning points. A (2 x 2) 

contingency table can be constructed and a Chi-square test 

used for testing the null hypothesis for independence between 
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actual and predicted turning points for each regression 

procedure. 

The turning points may be arranged in the following 

2 x 2 contingency table. 

Number of actual and predicted turning points method of 
estimation j-th (for j = 1,2,3): 

Actual 
turning 
points 

Actual 
no turning 
points 

Predicted turning 
points 

a 

c 

Predicted no 
turning point 

b 

d 

Total 

N 

There are two forecasts for each model, so the total number 

of observations (N = n1 +n2 ) is going to be 12. 

The test statistic is given by: 

T = N(ad-bc) 
nl n2 ml m2 

(5.13) 

The decision rule is to reject the null hypothesis if 

T exceeds the 1- ~ quantile of a Chi-square random variable 

with one degree of freedom. 

A measure for expressing the degree of dependence shown 

in a particular contingency table can be the Phi-coefficient 

defined as: 



www.manaraa.com

72 

(5.14) 

-l <IT< l 

which is a special case of the Pearson product moment cor-

relation coefficient. 

Model A 

This model was developed by Ryan and Abel (33, p . 105) 

for estimating the acreage planted in oats and effects of 

the U.S. government commodity programs to limit output. 

The model may be expressed as: 

where: 

A: 

V: 

is the acreage planted in oats 

is the support price weighted by planting restric-
tion 

is the payment for diverting land from oat pro-
duction 

includes other variables and random factors 

The variables explicitly included are: 

Y: U.S. acreage of oats planted (in thousands) 

U. S . average oats loan rate weighted by acreage 
restriction requirements (dollar per bushel) 

U. S. acreage of wheat planted (in thousands) 

U.S. acreage diverted under wheat programs (in 
thousands) 
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0 in 1956-67 and 1 in 1968-69, to account for a 
change in the economy policy 

linear trend 

x6 squared 

The functional form of the equation is: 

The sample period for the 1970 forecast is from 1956 

through 1969. In order to forecast 1971 the data used 

was 1956-1970. 

The weights assigned to this model were constructed as 

explained in Chapter IV, and they are shown in Table la. 

It is interesting to note that the weights assigned to the 

observation using the inverse of the metric weights are 

truly irregular in size; they do not follow a specific pat-

tern, and the idea of assigning more weights to more recent 

observations does not appear to be in agreement with the 

empirical results. Also, the metric weights are really 

small when they are compared with the temporal weights. 

1. Estimates from the regression: 

The estimated coefficients using unweighted and weighted 

regression procedures for both sample periods are shown in 

Tables lb and le, respectively . 

There are several aspects which are quite interesting 

in the values of the coefficients: 
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Table la . Weights (Model A) 
Data: 56-69 Data : 56-70 

Time Temporal Metric a Temporal Metric a 

1956 0 . 267260 0 . 078119 0 . 258200 0.051904 

1957 0.277350 0.210500 0 . 267260 0.342272 

1958 0 . 288680 0.165158 0.277350 0.081436 

1959 0.301510 0 . 088011 0.288680 0 . 057871 

1960 0.316230 0.089946 0.301510 0 . 060210 

1961 0.333333 0.089353 0.316230 0 . 059218 

1962 0.353550 0.199155 0 . 333333 0.199807 .....J 

"" 
1963 0.377960 0.249600 0 . 353550 0 . 107041 

1964 0.408250 0.162334 0 . 377960 0. 081484 

1965 0 . 447210 0 . 201134 0.408250 0.086308 

1966 0 . 500000 0.356502 0.447210 0.112613 

1967 0.577350 0.0 57172 0.500000 0.041462 

1968 0.707110 0.072440 0.577350 0.049062 

1969 1 . 000000 0.606100 0 . 707110 0 . 150561 

1970 1 . 000000 0.542100 

a . Metric value has been multiplied by 10 3 . 
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Table lb. Estimated coefficients according to different regression procedures 
(Model A) 

Variables Unweighted 

xl 

x2 

X3 

X4 

X5 

x6 

* 

5 3 I 001 ~-6 7 2 * * 
(8,568.388) 

13,567.821* 
(4,320.741) 

-0.231 
(0.142) 

-0.123 
(0.113 ) 

-24,009.988** 
(803.244) 

-3,562.153** 
(427.267) 

122.541* 
(36.899) 

E. < 0.05. 
** E. < 0.01. 

Data : 19 5 6-6 9 

Temporal 

53,203.515** 
(7,630.429) 

13,481.959* 
(4,314.127) 

-0.234 
(0.127) 

-0.127 
(0.103) 

-24,010.833** 
(772.333) 

-3,564.825** 
(399.006) 

122.859** 
(33.774) 

Weighted 
Metric 

53,013.869** 
(6,656.571) 

12,510.671* 
(4,321.027) 

-0.219 
(0.115) 

-0.107 
(0.095) 

-24,238.993** 
(677.529) 

-3,615.047** 
(322 .160) 

126.932** 
(26.531) 

....... 
U1 
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Table le. Estimated coefficients according to different r egression procedures 
(Mode l A) 

Data: 1956-70 
Variables Unweighted Wei9:hted 

Temporal Metric 

xl 53,776 . 419** 54 ,4 07.040** 55 , 214 . 556 ** 
(7,869 . 915) (7,173 . 535) (7 , 101 . 071) 

x2 1 3 ,470.664 * 13 , 340.131* 12 , 794 . 534* 
(4,076 . 81 3) (4,139 . 377) (4,288.326) 

x3 - 0.243 - 0 . 251 -0 . 255 
(0.131) (0 .1 20) (0.121) 

x4 - 0.125 - 0 . 129 - 0 . 124 
(0.106) (0.100) (0 . 101) 

XS - 23,954 , 424** - 23 , 976 . 255** -24, 261 . 414** 
(746.732) (745 . 866) (563.302) 

x6 - 3 , 597.524** - 3 , 626 . 194** - 3 , 746.514** 
(394 . 304) (374.012) (340 . 103) 

x 7 125.651** 128.178** 137 . 060** 
(34.023) ( 31 . 690) ( 29 . 199) 

* E < o.os . 
** E < 0 . 01 . 
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a. The three estimates of a specific coefficient do 

not differ greatly in value. There is not a big difference 

among the coefficients according to different regression 

procedures. 

In the 1956-69 sample period, the largest percentage 

variation is in the coefficients of x2 estimated by using 

OLS and MWR. This difference amounts to 7.8 percent. 

The smallest percentage difference is in coefficients of 

x5 estimated by OLS and TWR. The difference is 0.003 

percent. 

For the sample period 1956-70, the largest per-

centage difference is in the x7 coefficients which for 

OLS is 125.651 and for MWR is 137.060; this difference 

amounts to 9 . 1 percent. The smallest percentage is for 

x5 •s coefficients with a variation of 0.9 percent between 

the OLS and TWR procedures. 

~he average percentage of change of the coefficients 

between the two sample periods is 1.3 percent for the coeffi-

cients estimated using OLS, 1.6 percent for those estimated b y 

TWR and 3.6 percent for the coefficients obtained by using 

MWR. The smallest and largest changes are in x3 •s and x5 •s 

coefficients estimated by MWR, the difference amounts to 0.1 

percent and 16.4 percent respectively. 

The sign attached to each coefficient for different re-

gression procedures is the same; that is, the direction of the 
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change of the dependent variable in response to a unit change 

in a particular independent variable, holding constant the 

level of other independent variables, is the same whatever 

the regression procedure is. 

b. When an unweighted regression procedure is used, the 

standard errors (s.e.) of the estimators tend to be smaller 

than those obtained when a weighted regression procedure is 

used. 

2. Tables ld and le contain several statistics from the 

. 1 h h h . f 2 f h regression output. A t oug t e comparison o R or t e 

two regression procedures is invalidated, the fit of the 

equations can be appreciated comparing the actual values and 

their correspondent fitted series over the sample period for 

each regression procedure. All three regression procedures 

predict the same quantity of turning points (1) of a total of 

3 turning points for both of the sample periods. 

The size of the Durbin-Watson statistic for OLS indi-

cates negative serially correlated disturbance at the 0.05 

level of significance. 

The transformation of the variables, as they are af-

fected by weights, leads to a decrease of the estimator of 
2 A2 the variance (cr ) • The value of a in MWR is the smaller one. 

The plot of residuals against the predicted values, for 

all different procedures, does not indicate abnormality. So, 

the Least Squares analysis does not appear to be invalidated. 
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Table ld. 2 -2 R , R , Durbin-Watson and standard error according 
to different regression procedures (Model A) 

Data: 1956-69 
Statistics Unweighted Weighted 

Temporal Metric 

0.996** 

0.985 

3.637 3.588 3.719 

-0.828 -0.804 -0.866 

SE 622. 295 361.513 6. 598 

aRHO = first order autocorrelation coefficient. 
** 

p < 0.01. 

Table le. 2 -2 R , R , Durbin- Watson and standard error according 
to different regression procedures (Model A) 

Data : 19 5 6 - 7 O 
Statistics Unweighted Weighted 

Temporal Metric 

R2 0.996** 
-2 R 0.986 

DW 3.642 3.613 3.711 

RHO a -0.836 -0.827 -0.878 

SE 588.177 336.996 5.024 

aRHO = first order autocorrelation coefficient. 
** E. < 0.01. 
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3. Analysis of forecast: 

The actual values and the one-step-ahead forecast are 

shown in Table lf. All the predicted values for 1970 under-

Table lf. Actual and predicted values (Model A) 

Time Actual Predicted Value 
Value Unweighted Temporal Metric 

1970 24 , 492 24 ,157.0 24 ,124.9 24,117 . 8 

1971 21,926 22,108.8 22,128.6 22,213.2 

estimate the actual va lue. On the other hand , all regression 

procedures overestimate the actual value for 1971 . 

The smallest underestimation and largest overestimation 

come from obtaining the forecast by using MWR . 

There is no turning point for 1970 and the model, 

using the sample period 1956 - 69 , does not predict any turning 

point . All of the regression procedures predict exactly one 

turning point for 1971. 

The measures for accuracy of the forecast developed 

in this chapter indicate that the forecasts generated by 

using unweighted regression perform better than those ob-
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tained by using weighted regression procedures. This can be 

noted in Table lg, the values for M and G were found by 

applying the formulas (5.5) and (5 . 6) . The values of Z and 

A which compare the unweighted regression with the weighted 

one, assert a better performance of the former procedure for 

this model in particular . 

Table lg. Measures of accuracy forecast (Model A) 

Measures Unweighted Wei9:hted 
Temporal Metric 

M 0 .134a 0 . 16la 0.205a 

G 0.113a 0.137a 0.199a 

z 1.207 1 . 527 

A 1.100 1.277 

aMultiplied by 10 2 . 

Model B 

This model is also developed by Ryan and Abel (33, p . 

105) for estimating the acreage planted in barley . The 

variables explicitly included are: 
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U.S. acreage of barley planted (in thousands) 

U.S . average barley loan rate (plus direct support 
payments , 1963-6S) weighted by acreage restriction 
requirements (dollars per bushel) 

U.S. average oats loan rate weighted by acreage 
restriction requirements (dollars per bushel) 

U.S. acreage of wheat planted (in thousands) 

U. S. acreage diverted under wheat programs, in 
thousands 

x6 : 0 in 1949-6S and 1 in 1966-70 

The functional form can be written as: 

6 
y = E 

j=l 
s.x. + £ 

J J 

The first sample period is from 1949-69 , for fore-

casting 1970; in order to forecast 1971 the data used is 

1949 - 70. 

The weights assigned to this model are shown in Table 

2a . The metric weights are really small and they are always 

smaller than the temporal weights and follow an irregular 

pattern . 

1 . Estimates from the regression: 

In the first sample period , the largest variation is in 

the coefficients of XS estimated by using OLS and MWR (310%) . 

For the second sample period the largest difference is also 

in the XS coefficients (264 %) obtained by using OLS and MWR. 

The smallest difference in the first period is in the x1 
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Table 2a . Weights (Model B) 

Time 

1949 

1 950 

1951 

1952 

1953 

1954 

1955 

1956 

1957 

1958 

1959 

1960 

1961 

1962 

1963 

1964 

1965 

1966 

1967 

1 968 

1969 

1970 

Data : 49 - 69 
Tempor al 

0 . 218220 

0 . 2236 10 

0 . 229420 

0 . 235700 

0 . 242540 

0 . 250000 

0 . 258200 

0 . 267260 

0.277350 

0 . 288680 

0 . 301510 

0 . 316230 

0 . 333333 

0.353550 

0 . 377960 

0.408250 

0 . 447210 

0 . 500000 

0 . 577350 

0 . 707110 

1 . 000000 " 

. a Metric 

0 . 031608 

0 . 049238 

0 . 037502 

0 . 037348 

0 . 036988 

0 . 072275 

0 . 084835 

0 . 078119 

0 . 210500 

0 .1 65158 

0 . 088011 

0 . 089947 

0 . 089354 

0 . 199165 

0 . 249632 

0 . 162349 

0 . 201175 

0 . 356837 

0 . 057174 

0 . 072440 

0 . 606400 

Data : 49 - 70 
Temporal Met ric a 

0 . 213200 0 . 026435 

0 . 218220 0 . 037224 

0 . 223610 0 . 030295 

0 . 229420 0 . 030198 

0.235700 0 . 029969 

0 . 242540 0 . 048981 

0 . 250000 0 . 055625 

0 . 258200 0 . 051904 

0.267260 0 . 342273 

0 . 277350 0 . 081 436 

0 . 288680 0 . 057871 

0.301510 0 . 060210 

0 . 316230 0 . 059218 

0 . 333333 0 . 199817 

0 . 353550 0 . 107043 

0.377960 0 . 081486 

0 . 408250 0 . 08631 1 

0 . 447210 0 . 112624 

0 . 500000 0 . 041463 

0 . 577350 0 . 049062 

0 . 707110 0.150561 

1 . 000000 0.542100 

aMetric value has been multiplied by 10 3 . 
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coefficients. This variation amounts to 0.8 percent for 

the coefficients obtained by OLS and MWR. In the second 

sample period the coefficients of x1 estimaed by OLS and 

TWR have the smallest difference t0.6%). 

Comparing the coefficients for the same regression pro-

cedure between the two sample periods, a percentage of change 

is obtained for the OLS, between the first and the second 

sample periods , of 0.5 percent; for the TWR the percentage is 

3 .4 percent and for MWR the change amounts to 7.5 percent 

(see Tables 2b and 2c) . 

It is important to indicate a change in the sign 

associated to x5 coefficient in the first sample period . 

The sign attached to this coefficient, when it is obtained by 

using TWR procedure , is positive, but using OLS and MWR the 

sign is negative . The situation in the sample period 1949-

70 is different from this: all of the signs of the x5 •s 

coefficients are negative. 

The standard errors of the coefficients do not have 

a regular pattern; their value is not always smaller for a 

particular regression procedure than for others. 

Tables 2d and 2e show some results from the regression 

output. 

The OLS procedure exactly predicts over the first sample 

period two out of thirteen turning points . The TWR and MWR 

exactly predict one and zero turning points , respectively. 
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Table 2b . Estimated coefficients according to different 
regresion procedures (Model B) 

Data : 1949-69 
Variables Unweighted Weighted 

Temporal Metric 

xl 30 , 050.022** 29 , 351.549 ** 30,292 . 521** 
(2,255.273) (2 , 574 . 054) (2,928.123) 

x2 9 , 970.264** 9 , 768 . 948** 10 , 286 . 765** 
(2 , 251 . 301) (2 , 359.938) (2 ,74 5.559) 

x3 -18,273 . 009** -1 6 , 802 .4 30 * -1 2 , 615 . 873* 
(5,54 3 . 036) (6 , 182 . 066) (5 ,789.20 8) 

X4 - 0.219 ** - 0.226** -0.289** 
(0 . 045) (0.0 53) (0.060) 

X5 - 0 . 020 0 . 010 - 0 . 082 
(0.087) (0 . 094) (0 . 080) 

x6 -2,01 5 . 287 ** -1,96 2. 884 ** - 1 , 017 . 512 
(679 . 056) (572 . 404) (588 . 744) 

* E < 0.0 5 . 
** p < 0.01 . 
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Table 2c. Estimated coefficients according to different 
regression procedures (Model B) 

Data: 1949-70 
Variables Unweighted Weighted 

Temporal Metric 

xl 30,107.822** 29,917 . 427** 30,369.709** 
(2,160.345) (2,433.440) (2,540.569) 

x2 9,725.062** 9,489.262** 9,259.782** 
{2,166.362) (2,200.799) {1,460.272) 

X3 -18,256.214** -16,726.371* -14,014.748* 
{5,371.241) {S,914.457) {S,246.503) 

X4 -0.219** -0.227** -0.258** 
(0.043) { 0. 0 so) { 0 . 0 54) 

XS -0.025 -0.023 -0.091 
(0.078) (0.079) {0.062) 

x6 2,049.698** -2,066.757** -1,736.257** 
(627.707) (543.194) (549.236) 

* E. < 0.05. 

** E. < 0.01. 
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Table 2d. R2 , R2 , Durbin-Watson and standard error according 
to different regression procedures (Model B) 

Data: 1949-69 
Statistics Unweighted Weighted 

Temporal Metric 

R2 0 .876** 
-2 R 0.690 

DW 1.982 2.070 1.861 

RHO a -0.066 -0.101 -0 . 012 

SE 1,071.824 654.603 11.191 

aRHO = first order autocorrelation coefficient. 
** E. < 0.01. 

Table 2e . 2 -2 R , R , Durbin-Watson and standard error according 
to different regression procedures (Model B) 

Data: 1949-70 
Statistics Unweighted Weighted 

Temporal Metric 

R2 0.880** 
-2 R 0.704 

DW 2.034 2.197 2 . 121 

RHO a -0.078 -0.1 57 - 0.120 

SE 1,0 38 . 772 612.777 8.321 

aRHO = first order autocorrelation coefficient. 
** E. < 0.01. 
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In the second period the OLS exactly predicts one out 

of thirteen and TWR and MWR zero and zero turning points 

respectively. 

The use of the Least Squares analysis does not appear 

to be invalidated: the plot of the residual against pre-

dicted values over the sample periods does not indicate any 

abnormality. 

2. Forecast analysis: 

Table 2f indicates that all of the three regression 

procedures overestimated the actual values for 1970 and 1971. 

The largest forecast error for 1970 corresponds to the fore-

casts of the MWR procedure, the smallest one corresponds to 

the forecast of the OLS procedure. 

OLS and MWR procedures give the largest and smallest 

forecast error for 1971. 

The M and Z measures indicate that the MWR procedure 

performs better than either OLS or TWR. In contrast, the 

OLS procedure is considered better according to measures 

G and A. Thus, for this model, there is an indeterminacy 

which procedure performs better (see Table 2g) • 

There is not any turning point for either 1970 or 1971 

and the different regression procedures do not forecast any 

~urning points for these two years. 
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Table 2f. Actual and predicted values (Mode l B) 

Time Actual Predicted Value 
Value Unweighted Temporal Metric 

1970 10,435 10,663.4 11,052.6 11,277.152 

1971 11,182 13,771.8 13 , 599 . 3 13 , 200 . 026 

Table 2g. Measures of accuracy forecast (Model B) 

Measures Unweighted Weis:hted 
Temporal Metric 

M 0.023 0 . 022 0.017 

G 0.004 0.011 0.012 

z 0.921 0.707 

A 1. 077 1.015 

Model Cl 

This model was developed by Hun Lee Tong (41, p. 82). 

The purpose of the model is to estimate the housing demand 

and to evaluate the income and price elasticities of desired 

stock demand for nonfarrn housing. 

The variables explicitly included are: 

Y: per family gross rate of nonfarm residential 
construction in real terms 
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Boeckh index of residential construction cost 
in real terms 

per family nonf arm current income in the real terms 
derived from Raymond Goldsmith's series 

product of contract interest rates and contract 
lengths on a sample of straight urban mortgage 
loans 

loan-to-value ratios on a sample of straight 
urban mortgage loans 

beginning-of-year per family nonf arm housing stock 
in real terms 

The functional form of the equation regression is linear. 

y = 
6 
E S .X.+ e: 

j=l J J 

The first sample period goes from 1920 through 1939 and 

the second one from 1920 through 1940. The sample periods 

are used to forecast the one-step-ahead-forecast for 1940 

and 1941 respectively. 

The metric weights assigned to the observations of this 

model are small and follow an irregular pattern; the larger 

metric weights are not assigned to the most recent observa-

tions (see Table 3a). The metric weights are always smaller 

than the temporal weights. 

1. Estimates from the regression: 

The coefficients are shown in Tables 3b and 3c, for the 

~irst and second sample perrods , respectively. 

The largest and smallest variation for the same coeffi-

cient estimated using different procedures corresponds to the 
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Table 3a. Weights (Model Cl) 

Time Da t a : 20-39 Data : 20-40 
Tempora l Metric Temporal Metric 

1920 0.22361 0 0 . 00 3 378 0.218220 0 . 002681 
1921 0 . 229 420 0 . 003119 0 . 223610 0. 002371 
1922 0 . 235700 0 . 004061 0.229420 0 . 002895 
1923 0 . 242540 0 . 013677 0 . 235700 0 . 007031 
1924 0 . 250000 0 . 009903 0 . 242540 0 . 006601 
1925 0 . 25 8 200 0 . 005846 0.250000 0 . 004559 
1926 0 . 267260 0 . 003600 0 . 258200 0 . 003493 
1927 0 . 277350 0 .002734 0 . 267260 0 . 00 272 2 
1928 0 . 288680 0 . 002313 0 . 277350 0 . 002251 
1929 0.301510 0 . 001799 0 . 288680 0 . 001885 
1930 0 . 316230 0 . 001779 0.301510 0 . 001742 
1931 0 . 333333 0 .0 01971 0 . 31 623 0 0 . 001839 
1032 0. 353550 0 .001691 0 . 333333 0.0 01493 
1933 0 . 37 7960 0.001714 0 . 353550 0. 001493 
1934 0 . 4082 50 0 . 002143 0.377960 0 . 001815 
1935 0 . 44 721 0 0 .0 03212 0 . 408250 0 . 002556 
1936 0 . 500000 0 . 006141 0 . 447210 0 . 005094 
1937 0 . 577350 0 . 009081 0 . 500000 0.007448 
1938 0 . 707110 0 . 007 602 0 . 577350 0 . 004 313 
1939 1 . 000000 0.02 2758 0 . 707110 0 . 009797 . 
1940 1 . 000000 0 . 017246 
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Estimated coefficients according to different 
regression procedures (Model Cl) 

Unweighted 

817.604** 
(206.836) 

-7.730** 
(2 . 525) 

0.220** 
(0 . 062) 

-2.764* 
(0.968) 

8.102 
(4.240) 

-0.221** 
(0.046) 

Data: 1920-39 
Weighted 

Temporal Metric 
808.900** 

(223.809) 

-6.592* 
(2.599) 

0.206** 
(0.062) 

-3.171** 
(0.954) 

8.176 
(4.447) 

-0.238** 
(0.048) 

713.346* 
(274.297) 

- 6.414* 
(2.946) 

0.240* 
(0.083) 

-2.496* 
(1 . 088) 

6.446 
(5.130) 

-0.215** 
(0.056) 

E. < 0.05 . 
** E < 0.01. 

Table 3c . Estimated coefficients according to different 
regression procedures (Model Cl) 

Data: 1920-40 
Variables Unweighted Weighted 

* p < 0.05. 

** p < 0.01. 

Temporal Metric 
823.530** 827.196** 767.765** 

(199.890) (218.276) (260.191) 

-7.784** 
(2.444) 

0.221** 
(0.060) 

-6.784* 
(2 . 566) 

0.211** 
(0.061) 

-6.669* 
(2.900) 

0.243** 
(0 . 080) 
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Table 3c (Continued) 
Data : 1920-40 

Variables Unweighted Weighted 
Temporal Metric 

X4 -2.676** -2.802** -2 . 344* 
(0.904) (0.865) (0 . 948) 

X5 7.756 6.998 5 . 566 
(3.989) (4.136) (4 . 632) 

x6 -0.218** -0.228** -0. 214** 
(0.044) (0.047) (0 . 053) 

coefficients associated with X5 and x1 , respectively . This 

occurs in both sample periods . For the period 1920-39, the 

coefficient of x5 estimated by OLS is 8 . 102 and when esti-

mated by MWR is 6 . 446; this difference amounts to 20.4 per-

cent . For the second period the variation of the same 

coefficients is 28 percent. 

The smallest difference amounts to 1 percent and 0 . 4 

percent for the first and second period respectively. These 

are for the TWR and OLS coefficients of x1 . 

The average percentages of change of the coefficients 

between different sample periods are 1.18 percent for 

OLS , 3.2 percent for TWR and 3 . 3 percent for MWR. 

The sign attached to each particular coefficient re-

mains the same among regression procedures and sample periods. 

The standard errors (s . e . ) tend to be smaller for OLS 

than for TWR and MWR in both sample periods . 

The OLS and TWR predict three out of four turning points 
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Table 3d. 2 -2 R , R , Durbin-Watson and standard error according 
to different regression procedures (Model Cl) 

Data: 1920-39 
Statistics Unweighted Weighted 

Temporal Metric 

R2 0.870** 
-2 R 0.670 

DW 1.441 1.549 1.370 

RHO a 0.259 0.201 0.293 

SE 33.447 19.041 2.476 

aRHO = first order autocorrelation coefficient. 

** E. < 0.01. 

and MWR procedure only predicts two of them over the first 

period. On the other hand, in the second sample period, all 

of the three procedures exactly predict three out of four 

turning points. 

The value R2 is 23 percent less than the value of R2 , 

for both sample periods (see Tables 3e and 3f). 

The plot of residuals against predicted value does not 

indicate abnormality. 
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Table 3e. R2 , R2 , Durbin-Watson and standard error according 
to different regression procedures (Model Cl) 

Data: 1920-40 
Statistics Unweighted Weighted 

Temporal Metric 

R2 0 . 870** 
-2 R 0.676 

DW 1 . 447 1.448 1.378 

RHO a 0.261 0.251 0.294 

SE 32.443 18.209 2.127 

aRHO = first order autocorrelation coefficient. 

** E < 0.01. 

Table 3f. Actual and predicted values (Model Cl) 

Time 

1940 

1941 

Actual 
Value 

140.1 

146.6 

Unweighted 

154.611 

216.183 

2 . Forecast analysis : 

Predicted Value 
Temporal Metric 

165.755 162.163 

214.264 216.537 

No turning points exist beyond the sample period and no 

turning point is forecasted by any of the three regression 

procedures . 

Table 3f shows that all three regression procedures 
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overestimate the actual values for 1940 and 1941. 

The largest forecast error for the actual value of 

1940 corresponds to the predicted value using TWR procedure, 

the smallest one corresponds to OLS procedure. For the 

forecast of 1941, the MWR gives the largest forecast error 

and TWR the smallest one. 

The measures of forecast accuracy indicate that the 

unweighted regression procedure performs better than the 

weighted regression procedure. The values obtained for M 

(formula 5.5) and G (formula 5.6) are smaller using OLS than 

using either TWR or MWR. Table 3g also shows that Z and A 

are greater than one. That indicates that OLS regression 

procedure gives better forecasts. 

Table 3g. Measures of accuracy forecast (Model Cl) 

Measures Unweighted Weighted 
Temporal Metric 

M 0.414 0.427 0.440 

G 0.162 0.278 0.247 

z 1.036 1.064 

A 1.110 1.094 
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Model C2 

This model was also developed by Hun Lee Tong, however , 

he made a different assumption, namely, that the housing de-

mand is more responsive to permanent income than to current 

income. Thus, the variable x3 is now per-family permanent 

income, derived from Friedman's per capita permanent income 

series. 

The sample periods are still the same as for model 

Cl. 

The weights assigned to this model are shown in Table 

4a. The average of the metric weights assigned to Cl is 

smaller than the average of the metric weights for the model 

C2 in both sample periods. 

1. Estimates from the regression: 

The coefficients according to different regression pro-

cedures for the first and second sample periods are shown 

in Tables 4b and 4c , respectively. For the first sample 

period , the largest difference is between the coefficients 

of x1 estimated by MW~ and OLS (26%) . The smallest difference 

for the same sample period corresponds to the x4 coefficient: 

-2 .998 for OLS and -2.995 for TWR, the percentage of change 

is 0.1 percent. 

In the second sample period, the largest difference is 

in the coefficients of x5 estimated by MWR and by OLS 
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Table 4a. Weights (Model C2) 

Time Data: 20-39 Data: 20-40 
Temporal Metric Temporal Metric 

1920 0.223610 0.004024 0.218220 0.003539 
1921 0.229420 0.007351 0.223610 0.005052 
1922 0.235700 0.006434 0.229420 0.004621 
1923 0.242540 0.010022 0.235700 0.006420 
1924 0.250000 0.009872 0.242540 0.007468 
1925 0.258200 0.005842 0.250000 0.005273 
1926 0.267260 0.003612 0.258200 0.003520 
1927 0.277350 0.002701 0.267260 0.002700 
1928 0.288680 0.002244 0.277350 0.002241 
1929 0.301510 0.001847 0.288680 0.001880 
1930 0.316230 0.001685 0.301510 0.001699 
1931 0.333333 0.001924 0.316230 0.001918 
1932 0.353550 0.002190 0.333333 0.002095 
1933 0.377960 0.002399 0.353550 0.002198 
1934 0.408250 0.002649 0.377960 0.002364 
1935 0.447210 0.003359 0.408250 0.002868 
1936 0.500000 0.005448 0.447210 0.004318 
1937 0.577350 0.009393 0.500000 0.006793 
1938 0.707110 0.015932 0.577350 0.008263 
1939 1.000000 0.025954 0.707110 0.015226 
1940 1.000000 0.023490 
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Estimated coefficients according to different 
regression procedures (Model C2 ) 

Data: 1920-39 
Unweighted Weighted 

Temporal Metric 
860 . 908** 897 . 823** 636.218* 

(227 . 878) (224.241) (240 . 865) 

- 8 . 916** - 8.400** - 7.824** 
(2.671) (2 . 450) (2.555) 

0 . 332* 0.317* 0 .4 32** 
(0 . 118) (0.108) (0.132) 

- 2.998* - 2 . 995* - 2 . 696* 
(1 . 061) (1.050) (0 .9 97) 

10.595* 9 . 833* 8 . 613 
(4.381) (4.431) (4 . 347) 

-0 . 321** -0 . 326** - 0.315** 
(0 . 063) (0 . 059) (0 . 063) 

E. < 0.05 . 

** p_ < 0 . 01 . 
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Table 4c. Coefficients according to different regression 
procedures (Model C2) 

Data: 19~0-40 
Variables unweigntea Weighted 

Temporal Metric 
893.892** 936.825** 749.813** 

(222.087) (225.951) (253.320) 

-9.267** -8.745** -8.200** 
(2.611) (2.524) (2.757) 

0.320* 0.308* 0.401* 
(0.116) (0.110) (0.137) 

-2. 838* -2.609* -2.058 
(1.033) (1.014) (1.024) 

10.117* 8.723 6 . 698 
(4.299) (4.370) (4.498) 

-0.308** -0.310** -0.299** 
(0.060) (0.059) (0.065) 

* E. < 0.05. 
** E. < 0.01. 

Table 4d. R2 , R2, Durbin-Watson and standard error according 
to different regression procedures (Model C2) 

Data: 1920-39 
Statistics Unweighted Weighted 

Temporal Metric 

0.844** 
0.610 
1.353 1.299 1.296 
0 . 320 0.344 0. 346 

36.792 19.961 2 . 481 

aRHO = first order autocorrelation coefficient. 

** E. < 0.01. 
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Table 4e . 2 -2 R , R , Durbin-Watson and standard error according 
to different regression procedures (Model C2) 

Data: 1920-40 
Statistics Unweigfited Weighted 

Temporal Metric 

R2 0 . 837 ** 
-2 R 0 . 601 

DW 1.317 1 . 227 1 . 154 

RHO a 0 . 328 0 . 368 0 . 400 

SE 36.413 19.759 2 . 408 

aRHO = first order autocorrelation coefficient . 

** E. < 0.01. 

(33.8%). The smallest difference corresponds to the x6 
coefficients obtained by using OLS and TWR (0 . 6%) . 

The average percentages of change of the coefficients 

between sample periods are 1 . 2 percent for OLS , 4.7 percent 

for TWR and 4 . 9 percent for MWR. 

The sign attached to a particular coefficient remains 

constant whatever the regression procedure and sample 

period are . 

For the first s ample period , 1 920- 39, the OLS and MWR 

procedures exactly predict three out of four turning points 

over the entire period , the TWR procedure exactly predicts 

all the turning points, but the TWR procedure for the same 
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sample period also predicts six more turning points, which do 

not correspond with any in the actual series. 

In the sample period 1920-40, the OLS exactly predicts 

all the four turning points in the actual series but it also 

predicts six more for a total of ten. The TWR and MWR 

predict two and three out of four turning points, respectively. 

No abnormality is detected by the plotting of the 

residuals against predicted value for both of the sample 

periods. 

2. Forecast analysis: 

No turning points exist beyond the sample period and 

none are forecasted. 

All of the three procedures overestimate the actual 

values for 1940 and 1941. The smallest forecast errors 

correspond to the forecast obtained by using TWR procedures 

for 1940 and 1941. The smallest forecast errors correspond 

to the forecast obtained by using TWR proceudres for fore-

casting both v alues. The largest forecast errors correspond 

to the forecast obtained by applying MWR and OLS for the 1940 

and 1941 forecasts respectively (see Table 4f). 

Table 4g, based on the formulas 5.5 to 5.8, indicates 

that the TWR procedure performs better than the other two 

regression procedures for forecasting the actual values. 
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Table 4f. Actual and predicted values (.Model C2) 

Time Actual Value Predicted Value 
Unweighted Temporal Metric 

1940 140.1 179.788 175.830 181.984 

1941 146.6 213 . 397 201.352 210.722 

Table 4g. Measures of accuracy forecast (Model C2) 

Measures Unweighted Weighted 
Temporal Metric 

M 0.490 0.346 0.475 

G 0.425 0.314 0 . 431 

z 0.708 0 . 972 

A 0.850 0 . 995 

Model D 

The objectives of this model were to provide a basis 

for appraising feed consumption under alternative programs 

and for projecting the demand for feed concentrates . The 

model was developed by Ahalt and Egbert (1, p. 41). 

The model may be written as: 
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where: 

F · feed used in year t t• 

Lt: . livestock production or inventory in year t 

PLt-i: livestock prices in year t-i 

Pft- i: feed prices in year t-i 

Ut: random factors 

The variables explicitly included are: 

Y: total concentrates feed (million tons} 

total livestock production units (millions} 

ratio of livestock and product prices to feed 
grains and hay prices, multiplied by 100. 

The functional form of the equation is: 

The sample period for the 1961 forecast is 1947-1960. 

The forecast for 1962 is based on the sample period 1947-

61 . 

Table Sa shows the weights assigne d to this model. 

The weights based on the metric distance have an in-

creasing trend through the sample period. That implies 

that more weight is assigned to the last observations. 

The metric weights are smaller than the temporal weights. 

For the first sample period, the largest metric weight which 

is assigned to the last observation can only be compared with 

the temporal weights assigned to the two first observations . 

For the second period the metric weights increase in 
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Table Sa. Weights (Model D) 

Time Data: 47-60 Data: 47 - 61 
Temporal Metric Tempora 1 Metric 

194 7 0 . 267260 0.014819 0 . 2S8200 0 . 014910 

1948 0 . 2773SO 0.017428 0.267260 0 . 017531 

1949 0.288680 0 . 032SOO 0 . 2773SO 0.031491 

19SO 0.301Sl0 0.031969 0 . 288680 0 . 031956 

1951 0.316230 0.034762 0.301Sl0 0.034381 

19S2 0 . 333333 0 . 022029 0.316230 0.022217 

19S3 0.3S3SSO 0 . 021186 0 . 333333 0 . 021339 

1954 0.377960 0.020423 0.3S3SSO 0.020839 

195S 0.4082SO 0 .0 23408 0 . 377960 0 . 024021 

19S6 0.447210 0.020934 0.408250 0.021377 

1957 0.500000 0 . 037704 0.447210 0.038008 

1958 0.577350 0.099381 0.500000 0.078266 

1959 0.707110 0.176777 0 . 577.350 0 . 158114 

1960 1.000000 0.276158 0 . 707110 0 . 353553 

1961 1.000000 0.511667 

value quickly . 

1 . Estimates from the regression: 

Tables Sb and Sc present the values of the estimated 

coefficients for different regression procedures for first 

and second sample periods, respectively. 

For the sample period 1947-60 the largest difference 
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Table Sb. Estimated coefficients according to different 
regression procedures (Model D) 

Data: 19~7-t>O 
Variables Unweighted Weighted 

Temporal Metric 

xl - 52.176** -66.218** -91.300** 
(16.100) (17.899) (18.378) 

x2 0.778** 0.863** 1.090** 
(0.123) (0.141) (0.153) 

X3 0.237** 0. 228* 0.113 
(0.071) (0.081) (0.097) 

* E < o.os . 
** E. < 0.01. 

Table Sc. Estimated coefficients according to different 
regression procedures (Model D) 

Variables 

* E. < 0.05. 

** p < 0.01 . 

Unweighted 

-64 . 109** 
(15.731) 

0.853** 
(0.125) 

0.227* 
(0.077) 

Data: 1947-61 
Weighted 

Temporal 
-79.290** 
(16 . 545) 

0.950** 
(0 . 136) 

0.209* 
(0.085) 

Metric 
-104 . 152** 

(14.709) 

1.175** 
(0.127) 

0 . 094 
(0.092) 
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Table 5d. 2 -2 R , R , Durbin- Watson and standard error according 
to different regression procedures (Model D) 

Data : 1947-60 
Statistics Unweishted Weighted 

Temporal Metric 

R2 0.950** 
-2 R 0 . 885 

DW 1 . 840 1. 804 1.639 

RHO a - 0 . 058 -0.043 0.080 

SE 3.188 2 . 272 0.780 

aRHO = first order autocorrelation coefficient . 
** E < 0.01. 

Table Se . 2 - 2 R , R , Durbin- Watson and standard error according 
to different regression procedures (Model D) 

Data: 1947-61 
Statistics Unweighted Weighted 

Temporal Metric 

R2 0 . 953** 
-2 R 0.893 

DW 1 . 557 1 . 516 1 . 381 

RHO a 0 . 127 0.142 0 . 242 

SE 3.445 2.314 0 . 772 

aRHO = first order autocorrelation coefficient. 
** E < 0 . 01. 
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among the coefficients for the different regression pro-

cedures is in x 1 ~s coefficients , the variation between 

the OLS and MWR coefficients amount to 75 percent . The 

smallest variation is in x3 •s coefficients related by 

OLS and TWR (3.4%). This situation is also present for the 

sample period 1947-61; the variation amounts to 62.5% 

and 7.9 percent, respectively . 

The average percentage of change in the coefficients 

between the two sample periods is 9.7 percent for the un-

weighted regression procedure, 11.8 percent for the TWR 

and 24.3 percent for MWR. 

The sign attached to each coefficient is constant 

whatever the regression procedure and the sample period. 

The standard errors {s.e.) tend to be smaller for OLS 

than either TWR and MWR in both sample periods. 

For the f rrst sample period all three regression pro-

cedures predict fou r turning points out of six real turning 

points. In the second sample period only the MWR predicts 

three out of six actual turning points, OLS and TWR predict 

four turning points . 

The plot of residuals against the predicted values, for 

different procedures, does not indicate abnormality; so, 

the Least Squares Analys·.Is does not appear to be invalidated. 
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2 . Forecast analys is : 

There is no turnj nq p0 i nl in l q(i I, tH,nr' ot tlw 1·r1-

gression procedures forecast any turning points . Only MWR 

procedure forecasts the turning point for 1962. 

Table Sf presents the actual and forecast values for 

model D. The actual value for 1961 is underestimated for 

all the three regression procedures. In contrast, the 

actual value for 1962 is overestimated. The MWR gives the 

smallest forecast error for the predicted value of 1961, 

and OLS gives the largest one. 

A contrary situation is given when the value for 1962 

is forecast. The MWR procedure gives the largest forecast 

error and OLS gives the smallest one. 

The results of applying the formulas for measuring the 

accuracy of the forecast are given in Table Sg . It is 

necessary to mention the following: 

1 . M indicates that the TWR performs better than the other 

two; on the other hand , G points to OLS as the best one. 

2. The value of Z indicates a better performance of TWR 

than the OLS; and from the A value , it is possible to con-

sider the OLS as superior to the other two regression pro-

cedures. Thus, under these measures it is not possible to 

say which regres sion procedure performs better in 

forecasting . 
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Table Sf. Actual and predicted values (Model D) 

Time Actual Value Predicted Value 
Unweighted Temporal Metric 

1961 152.9 146.458 148.253 150.561 

1962 152.0 152 . 994 155 . 241 158.497 

Table Sg . Measures of accuracy forecast (Model D) 

Measures Unwei9hted Wei9hted 
Temporal Metric 

M 0.124 0.087 0.114 

G 0.033 0.078 0.079 

z 0.755 1.122 

A 1. 061 1.188 

Model E 

The purpose of this model is to explain post-war state 

and local government new debt patterns. The author of this 

model is M. Tanzer (38 , p. 237) . 

The variables included in the model are: 

Y: state new debt, excluding the toll road sector 
(in billions of dollars) 

state (nontoll) capital expenditures (less 
federal highway grants) 

lagged stock of (nontoll) liquid assets 
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x4 : index of interest rate changes 

The model can be written as : 

y = 81Xl + 82X2 + 83X3 + 84X4 + £ 

The sample periods are 1953-II to 1959-IV and 1953-II 

to 1960-I for the first and second forecasts respectively. 

The data are quarterly data. 

The metric weights assigned to this model (see Table 

6a) show an irregular pattern . The most recent obser vations 

are not affected by heavier weights but the weights tend to 

increase over time . 

The weights constructed using the temporal distance are 

in most of the cases smaller than the weights based on metric 

distances. 

1. Estimates from regression: 

There is quite a big difference among the coefficients 

estimated (see Tables 6b and 6c). 

For the sample period, 1953-II to 1960-I, the coefficient 

of x1 of OLS has attached a contrary sign to the sign assigned 

to TWR and MWR. 

In both sample periods , the largest difference between 

two estimates of a coefficient corresponds to the coefficient 

of x1 . The variation amounts to 62 percent and 290 percent 

for the coefficients estimated by OLS a n d TWR for the first 

and second periods respectively. The smallest difference, 
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Table 6a . Weights (Model E) 

Time 

1953- II 
- III 
-IV 

1954-I 
-II 
-III 
-IV 

1955-I 
- II 
- III 
- IV 

1956-I 
-II 
-III 
-IV 

1957-I 
-II 
-III 
-IV 

1958-I 
- II 
-III 
- IV 

1959- I 
-II 
- III 
-IV 

1960- I 

Data : 53-II to 59- IV 
Temporal Metric 

0.192450 
0.196120 
0 . 200000 
0 . 204120 
0 . 208510 
0.213200 
0 . 21 8220 
0 . 223610 
0.229420 
0 . 235700 
0.242540 
0 . 250000 
0 . 258200 
0 . 267260 
0.277350 
0 . 288680 
0 . 301510 
0 . 316230 
0.333333 
0 . 353550 
0 . 377960 
0 . 408250 
0.447210 
0 . 500000 
0 . 577350 
0 . 707110 
1 . 000000 

0 . 304671 
0 . 333537 
0.325307 
0.280492 
0 . 24 1140 
0.246805 
0 . 251044 
0.311400 
0.390882 
0.451754 
0.399936 
0 . 397260 
0 . 407373 
0.431046 
0.421911 
0 . 405284 
0.390423 
0 . 428857 
0.531216 
0 . 506078 
0 . 392701 
0.416114 
0 . 693092 
1 . 183700 
0.851102 
0 . 942851 
2 . 126551 

Data: 53-II to 60 - I 
Tempora l Metric 

0.188980 
0.192450 
0 . 196120 
0.200000 
0.204120 
0.208510 
0.213200 
0 . 218220 
0.223610 
0.229420 
0.235700 
0.242540 
0 . 250000 
0 . 258200 
0.267260 
0.277350 
0 . 288680 
0.301510 
0 . 316230 
0.333333 
0 . 353550 
0 . 377960 
0.408250 
0.447210 
0 . 500000 
0.577350 
0.707110 
1.000000 

0 . 277052 
0 . 328549 
0 . 359382 
0 . 333196 
0 . 294611 
0.304488 
0.312192 
0 . 385400 
0 . 447841 
0 . 431733 
0.338701 
0.336976 
0.342337 
0.354706 
0.348924 
0 . 338991 
0.329701 
0.350840 
0.482484 
0 . 609201 
0.549608 
0 . 615073 
1 . 000150 
0 . 771127 
0.476163 
0 . 490120 
0 . 987730 
1 . 987880 
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Table 6b. Estimated coefficients according to different 
regression procedures (Model E) 

Data : 1953-II to 1959- IV 
Variables Unweighted Weighted 

Temporal Metric 
0 . 194 0 . 074 0.111 

(0 . 247) (0 . 222) (0 . 218) 
0.432** 0 . 476** 0 . 465** 

(0 . 080) (0 .0 69) (0.069) 
-0. 320** (0 . 297** - 0 . 298** 
(0 . 074) (0.053) (0 . 051) 
- 0.115** - 0 . 122* -0.122** 
(0 . 020) (0.020) {0.021) 

** p < 0 . 01. 

Table 6c. Estimated coefficients according to different 
regression procedures (Model E) 

Data: 1953- II to 1960-I 
Variables unweigntea weightea 

Temporal Metric 

xl 0 . 073 - 0 . 139 - 0 . 116 
(0 . 237) (0 . 224) (0.217) 

x2 0.465 ** 0.532** 0.525 ** 
(0 . 0 77 ) {0 . 072) {0.070) 

x3 -0.268 ** - 0 . 221** - 0 . 206** 
(0.066) (0 . 050) (0.049) 

X4 - 0.112** - 0.111** -0 . 110** 
(0 . 021) (0 . 021) (0.222) 

** p < 0 . 01 . 
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between OLS and a weighted procedure, corresponds to x4 's 

coefficients when they are estimated by TWR (6% and 1 %). 

The largest variation for the same coefficient in a 

different sample period is in the x1 •s coefficient obtained 

by MWR, wnich changes from 0.111 in the first period to 

-0.116 in the second period (-2.290%). The smallest variation 

corresponds to the x4 's coefficient when using OLS pro-

cedure. The change is from -0.115 to -0.112 in the second 

period ; this represents a variation of 3 percent. 

The average percentage of change in the coefficients 

between the sample periods is 12 percent for OLS, 30 per-

cent for TWR and 53 percent when MWR procedure is used. 

The standard errors of the coefficients tend to be 

smaller for OLS . 

Tables 6d and 6e show some results from the regression 

output. 

In the first sample period the OLS predicts exactly 

three out of ten turning points, the weighted regression pro-

cedures only predict exactly two of them over the sample 

period 1953-II to 1959-IV. For the second sample period all 

of the three regression procedures exactly predict only two 

out of eleven turning points. 

The plot of residuals against predicted values, in 

both sample periods and regression procedures does not indi-
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Table 6d . R2 , R2 , Durbin- Watson and standard error according 
to different regression procedures (Model E) 

Data : 1953- rr to 1959- rv 
Statistics Unweighted Weighted 

Temporal Metric 

R2 0 . 920* * 
-2 R 0.826 

DW 0.918 1. 074 1.015 

RHO a 0. 511 0 . 429 0 . 461 

SE 0.146 0 . 075 0.091 

aRHO = first order autocorrelation coefficient . 
** :e. < 0 . 01. 

Table 6e . R2 , R2 , Durbin- Watson and standard error according 
to different regression procedures (Model E) 

Data : 1953-rr to 1960-I 
Stati stics Unweighted weight ed 

Temporal Metric 

R2 0.919** 
-2 R 0 . 825 

DW 0.903 1. 026 1 . 094 

RHO a 0.513 0 . 438 0 . 411 

SE 0.149 0 . 080 0 . 098 

aRHO = firs t order autocorrelation coefficient. 
** p < 0 . 001. 
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cate abnormality; so, the Least Squares Analysis does not 

appear to be invalidated . 

2. Forecast analysis: 

No regression procedure forecasts the turning point for 

1960-I. All three regression procedures overestimate the 

actual values for 1960-I and 1960-II. The OLS gives the 

largest forecast error (in absolute value), and MWR gives 

the smallest one for both sample periods (see Table 6f) . 

The measures of accuracy developed in this chapter 

indicate that the MWR performs better than either OLS or 

TWR (see Table 6g). 

Table 6f. Actual and predicted values (Model E) 

Time Actual Value Predicted Value 
Unweighted Temporal Metric 

1960-I 1.86 2.108 2.100 2.098 

1960-II 1.79 2.082 2. 024 1.998 
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Table 6g. Measures of accuracy forecast (Model E) 

Measures Unweighted Weighted 
Temporal Metric 

M 0 . 304 0 . 233 0.208 

G 0 . 300 0.232 0.205 

z 0.765 0.681 

A 0.878 0.826 

7. Overall appraisal : 

After analyzing each model according to the different 

regression procedures, it is necessary to evaluate the 

overall performance of each regression procedure. 

1 . Weights : 

The weights assigned to the observation have two 

characteristics : 

a. Temporal weights increase over time and tend to 

be larger than metric weights. 

b . Metric weights follow an irregular pattern ; that 

means that the more recent observations are not always as-

signed more weight. 

2. Estimates from the regression: 

On this aspect, it is possible to point out : 

a . There is not a big difference among the estimated 

coefficients according to different regression procedures , 
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for the same sample period and the same model . 

b . The largest differences between the coefficients 

estimated by using OLS and a weighted regression procedure 

correspond to coefficients estimated by using MWR (nine out 

of twelve) . Seven out of nine largest variations are in 

coefficients of x1 . 

The smallest variations correspond to the coefficients 

estimated by applying OLS and those estimated by using TWR 

procedure (eleven out of twelve). There is not a particular 

coefficient associated to those changes. 

c. The difference between coefftcients for the two 

sample periods is 2.3 percent for the coefficient estimated 

by using OLS, 5.5 percent for those estimated by TWR, and 

9 . 1 percent for the coefficients estimated by applying MWR 

procedure (see Table 7) . 

d. The standard errors of the estimated coefficients 

tend to be smaller when OLS is used than when a weighted 

regression procedure is utilized; this situation is present 

in four out of six models. In the models C2 and E the s.e . 

do not have a specific pattern. 

e . In general, the direction of the change of the 

dependent variable, for a specific model, in response to a 

unit change in a particular independent variable, holding 

constant the level of other independent variables, is the 

same whatever the regression procedure is. The only 
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Table 7. Percentage of change between coefficients of two 
sample periods 

Model Procedure 
OLS TWR MWR 

A 1.3 1.6 3.6 

B 0.5 3.4 7.5 

Cl 1.8 3.2 3.3 

C2 1.2 4. 7 4.9 

D 9.7 11.8 24.3 

E 12.0 30.0 53.0 

exceptions to this statement are the models B and E, in which 

a particular coefficient has different signs for different 

regression procedures. 

f. The data transformation did not significantly affect 

the correlation between the successive residuals. Fourteen out 

of twenty-four (58. 3%) first order autocorrelation coefficient 

(RHO) values showed an increment, and only in one case (Model D 

Second Sample Period) RHO changed sign (positive to negative). 

3 . Of turning points over the sample period for the 

first sample periods, the OLS procedure exactly predicts 54 

percent, TWR and MWR procedures exactly predict 52 percent 

and 30 percent respectively. 

For the second sample periods , the OLS also exactly 

predicts the greater number of turning points: 51 percent, 

whereas TWR and MWR only predict 44 percent . 
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Table 8. Measures of overall appra~sal of forecasts 

Measures Unweighted Wei9:hted 
Temporal Metric 

TM 0.226 0.186 0.243 

TG 0.038 0.054 0.128 
' TZ 0.899 1.012 

TA 1. 013 1.066 

4. Forecast analysis: 

The results of applying formulas 5.12, 5.13, .14 and 

5.15 are shown in Table 8. 

The values obtained for TG and TA indicate that the 

unweighted regression procedure, OLS, performs better than 

either TWR or MWR procedures. 

On the other hand, TM and TZ identify TWR as the 

procedure with better performance in forecasting. 

Regression procedures overestimate ten out of twelve 

(83.3%) actual values. Four out of six largest errors 

correspond to forecasts obtained by using OLS , three of the 

smallest forecast errors correspond to predictions associated 

to MWR procedure (see Table 9). 

The MWR forecasts two out of three turning points be-

yond the sample periods: OLS and TWR predict one each. 

The test statistic (formula 5.13) for testing the 

null hypothesis for independence between actual and forecast 
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procedures 

Model Procedure 
Forecast OLS TWR MWR 

A 
1 335 .00 367.10 374 .16 
2 -182.80 - 202.60 -287.15 

B 
1 -228.40 - 617.60 - 842 . 15 
2 -2,589 . 80 - 2,417.30 - 2 , 018.03 

Cl 
1 -14 . 51 -25.65 -2 2 .06 
2 -69.58 - 67.66 -69.94 

C2 
1 - 39 . 69 - 35 . 73 - 41 . 88 
2 - 66 . 80 -54. 75 - 64 . 12 

D 
1 6 . 44 4 . 65 2.34 
2 -0.99 - 3 . 24 - 6 . 50 

E 
1 -0.25 -0.24 -0.24 
2 -0.29 -0. 23 -0 . 21 

....... 
N 
....... 
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turning points, beyond the sample period, for each regres -

sion procedure indicates that there is no reason for re-

jecting the null hypothesis at 5 percent level. 

The measure for expressing the degree of dependence 

between predicted turning points and actual turning points 

is 0.52 for OLS, and 0.77 for TWR and MWR. 
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CHAPTER VI. CONCLUSIONS 

One of the specific objectives of this thesis is to 

compare the unweighted and weighted regression and to eval-

uate their performance for forecasting. Before, making a 

decision about which regression procedure is better for 

forecasting, it is convenient to analyze several points: 

1. The number of forecasts utilized is small. Only two 

forecasts were obtained from each econometric model, hence 

the nwnber of turning points which could be predicted beyond 

the sample period is also small. 

2. Measures of accuracy for forecasts do not clearly 

indicate which regression procedure is better. 

It is convenient to recall that G and A are a geometric 

mean and ratios of absolute values respectively, both of 

these measures do not tend to be affected by large errors, 

(large under and/or overestimations). On the contrary, M 

and Z are quite affected by extreme values of the forecast 

error. 

These two points help to understand situations such as 

model E and model B, in which it is not possible to deter-

mine which regression procedure is better. 

Thus, it is possible to conclude: 

1. The metric distance does not appear to be a con-

venient way for generating weights. The weights obtained by 
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using metric distance are not always in accordance with the 

assumption that each observation should be weighted by con-

sidering its ''proximity to current conditions", Ladd 

(25, p. 9). 

2 . Although there is indeterminancy, by using the over-

all measure of accuracy (TM, TG, TZ and TA), the OLS proce-

dure predicts over the sample period more turning points than 

either TWR or MWR procedure. Beyond the sample period the 

OLS only forecast one out of three turning points. In two 

out of six models the unweighted regression procedure per-

formed better than the weighted ones. 'IWR and MWR procedures 

only performed better than the OLS in one model. 

For the other two models it was not possible to decide 

which procedure is superior . 

Measures Mjk and Zjk are based on arithmetic mean squared 

errors. On these tests, OLS performed best in two models, 

'IWR in two, and MWR also in two, and TM was smallest for 'IWR 

and TZ smallest for MWR. 

These results suggest that an analyst who places more 

weight on criteria based on arithmetic mean squared errors 

should use a weighted procedure. But results do not clearly 

identify one weighted method as always superior to the 

other. 

Measures based on absolute errors or geometric mean 

squared errors give less weight to extreme errors that do 
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Mjk and zjk. According to Ajk and Gjk ' OLS gives superior 

results in four of the six models. An analyst who does not 

want to assign large importance to large errors should 

choose OLS . 

Several suggestions can be made for further research 

about this subject: 

1. To forecast more values for each model , instead of 

generating two forecasts, it would be convenient to construct 

a larger set of forecasts for the same model: in total it is 

possible to generate t - (k+l) forecasts for each model , based 

on the condition of rank of the matrix of observations k <t . 

This might lead to unambiguous results about which re-

gression procedure is better. 

2. To compare the forecast obtained by the different 

regression procedures with a method such as the Box- Jenkins 

method, which is a regression forecasting procedure based on 

past values. 

3 . The last metric weight was obtained by adding the 

two largest metric weights; it would be convenient to assume 

other values for this last weight and to verify how these 

values affect the performance of the model for forecasting . 

4 . To combine the several forecasts in order to obtain 

a single forecast . Methods developed for this purpose require 

a larger number of forecasts than are obtained in this thesis . 
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5. The process of generating forecasts by using weighted 

regression is cumbersome and expensive and causes diffi-

culties in deriving tests of hypothesis for the estimators. 
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